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NETS OF QUADRICS, AND THETA-CHARACTERISTICS
OF SINGULAR CURVES
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The major part of this paper is devoted to enumerating all the many types of nets of
quadrics in C%. An introductory section puts the invariant theory in context, and gives
a framework for the classification.

A quadric #T(Ady+pd;+vd,)x of the net has dual equation XTadj(Ad,+
uA, +vA,) X = 0. The adjugate system is the system of curves in the (A, 4, v) plane given

Vol. 289. A 1357. 15 [Published 2 May 1978

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%}ﬁ
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. STORS
Www.jstor.org


http://rsta.royalsocietypublishing.org/

<

—
3~
olm
<=
= O
= O
= uwv

PHILOSOPHICAL
TRANSACTIONS
OF

A

y \

/7

Py
A \

9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

230 C.T.C. WALL

by these equations. The set B of base points of this system on the curve 0 = 4 =
det (A4, + pd; +v4,), together with the curve 4, give system to the enumeration.

In a final section of the paper the calculations are used to provide evidence for con-
jectures of the following type (generalizing results known when 4 = 0 is non-singular):
each net determines and is determined by a square root of the canonical bundle on the
curve I" obtained from 4 by blowing B up; the set of square roots is an affine space over
[y, and those arising are the zeros of a certain quadratic map.

INTRODUCTION

In a previous paper (Wall 1977) I gave a complete classification of nets of conics. The corres-
ponding results for quadrics are enormously more complicated. However the analysis for non-
singular discriminant is classical (Dixon 1902), and acting on a suggestion from Michael Atiyah
that this was the correct approach I found that my lists could be presented in a systematic manner
which not only showed considerable regularity of pattern but also led me to conjecture certain
extensions of the classical theory.

This is presented in this paper. I have not deferred publication to wait for a proof of the con-
jectures, partly because this demands not only a much closer analysis of higher singularities even to
obtain a compete formulation, but also a better understanding of the classical theory of theta
functions and periods than I at present possess; and partly because I am interested in the nets of
quadrics for their own sake, and wish to present the associated geometry as of intrinsic value not
solely derived from this tantalizing relation with a deeper theory.

The paper is divided into four sections. In the introductory § 0 we introduce notation, put the
original problem in context and apply the techniques of geometric invariant theory (Mumford
1965). The detailed geometrical classifications are presented in § 1: this involves numerous case
distinctions which we ameliorate as far as appears possible. In §2 we introduce the adjugate
system, whose base points will serve as a systematic basis for the enumeration, and give a partly
heuristic calculation of multiplicities which serves as a check that the listing is complete. The
system B of adjugate base points lies among the multiple points of the discriminant curve 4. In
§3 we present evidence that the nets are related to bundles over the curve I" defined by blowing up
4 along B. This is reasonably explicit and convincing in the case when 4 has only double points,
but the number of cases with triple points arising is not large enough to illustrate all the compli-
cations that could arise.

The subject of nets of quadrics is of course an old one, with references going back over a cen-
tury. We refer particularly to the papers of Hesse (18554, 5) where the adjugate system was first
used in connection with the enumeration of nets with a given discriminant (see also Sturm 1869).
The most extensive work in more recent times was the series of papers by W. L. Edge (1936~43).
Edge’s main interest was the study of the geometry and invariant theory of the general net, but
he does mention a number of special cases. The following quotation from the introduction to the
penultimate of these papers seems particularly apposite here: ‘It would be a long undertaking to
consider all the different specializations of a net of quadrics, and the importance of some of these
would be small and out of all proportion to the labour involved in investigating them thoroughly’.
The present investigation is by no means thorough in the sense envisaged, and we propose stability
as a criterion of importance.
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NETS OF QUADRICS 231

0. LINEAR SYSTEMS OF QUADRICS IN C”
We adopt the following notation. Take x = (xy,...,4,) as coordinates in C*, and write the
equation of a quadric as
n
S = 2 a,,:j X x,-,
ii=1
where 4 = (a;;) is a symmetric matrix. If we have several such, we may distinguish by an index:

k
S, afj, AD. Alinear system of quadrics, of freedom £, may be writtenas 3, A,S, = 0. One may seek
r=0

to classify these forms under the action of the group GL,;_(C) x GL, (C), where GL;_,(C) acts by
linear substitutions of the A, and GL,, (C) on the x;. It is more convenient to modify this procedure,
and first study the action of GL, (C).

If £ = 0, the GL,(C)-orbits are determined by the rank of S,. If £ = 1, we have a pencil of
quadrics. The complete classification of pencils is well known (see for example, Jordan 1906;
Gantmacher 1959; Hodge & Pedoe 1952). We assume this, also the notation for the classification
introduced in the latter but originally due to Segre (1921). For a general pencil we can choose
coordinates (i.e. operate by GL,(C)) so that

n n
So = Daf S = Dol
1 1

The coordinates are then determined up to order and sign. Thus the corresponding isotropy
group is finite.

To apply invariant theory, it is convenient to restrict the action to the subgroup SL,(C). The
only invariant when £ = 01is clearly the determinant det (a;;). In general, if we write

k
A=A = det( > A,‘a?})
r=0

then 4 is homogeneous of degree nin A, ..., A, and the coefficients of 4 are all invariants. We refer
ambiguously to 4, or to the locus 4 = 0 considered as a hypersurface in P,(C), as the discriminant
of the linear system.

If the discriminant locus has no repeated component, we can find a line in P, (C) meeting itin z
distinct points. Thisline determines a subpencil of the linear system of the general type mentioned
above. Hence the isotropy group (of the pencil, hence also of the linear system) is finite.

Now consider the case k = 2. Here, there are 3n(n+ 1) coefficients a{; SL,(C) has dimension
n2—1 and ‘most’ isotropy groups have dimension 0. The quotient space (in the sense of Rosen-
licht 1963) is thus a union of manifolds with greatest dimension %(n? 4+ 3n + 2). But this is precisely
the number of coefficients in 4. Since (Dixon 1902) a general plane z-ic curve 4 does correspond
to a net, we deduce that for almost all 4, there are a finite number of corresponding SL,,(C)-orbits
of linear systems.

If the subpencil where only A, and A, are non-zero is general, and we normalize coordinates as
above, it follows for most (we will shortly see, for all) homogeneous n-ics 4(A;, A, A,) taking the
given values when A, = 0 that the quadric S, is determined up to a finite ambiguity. For k£ > 2, we
deduce again that (the SL,-orbit of ) the linear system is determined by 4 up to a finite ambiguity,
but 4 will no longer be an arbitrary z-ic form. In the language of invariant theory, we deduce that
the field of invariants will be a finite extension of the field C(4) defined by the coefficients of 4.
That this extension is in general non-trivial we observed already in the paper on nets of conics.

15-2
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232 C. T. G. WALL

For further precision we turn to the work of (Mumford 1965) on stability, according to which
the system of invariants determines stable orbits and yields useful information in the semistable

k
case. A linear system Y A,.S, fails to be stable (resp. semistable) if SL,(C) has a semisimple
0

1-parameter subgroup 0(¢), depending on a multiplicative parameter ¢, such that each 0(¢) S, is
bounded as {—> oo (resp. tends to 0 as {—>0).

k
TreOREM 0.1. (1) The system 3 A, S, is unstable if and only if, for some choice of coordinates x and some
0

integer s, 1 < s < }n, we have ) = 0 whenever 0 <r <k, 1 <i<s,1<j<n—s.
(i1) It fails to be semistable if and only if for some coordinates x and some s, 1 < s < ¥(n+1), we have
a) = 0 whenever 0 <7 <k, 1<i<s, 1 <j<n+1-s

Proof. (1) As 0(¢) is semisimple, it can be diagonalized: say as diag (¢, ..., f*n) with oy > ... > «,,
n
and Y «,; = 0 (since we are in SL,(C)), and not all e, zero.
1 n—1
If for each 7 with 1 <7 <n—1 we have ;+«,_; < 0, then, summing, 2 ¥} «; < 0. Thus
1

a, > 0,and each a; > «, > 0. We deduce each a; = 0: a contradiction. Thus some a;+ o, _; > 0;
interchanging s and n— s if necessary we may suppose 1 < s < 4n. But now as «; is decreasing,
n
a;+o; > 0whenever 1 < i< s, 1 <j<n—s Thusifeach 0(t) S, = X %% alx;x;is bounded
. . hi=1
as ¢ o0, we must have afy = 0 for all r whenever i < s5,j < n—s.
Conversely if this condition is satisfied we define a 1-parameter subgroup as above by choosing

1 1<1<s

(note that Xa; = 0). For this subgroup, each 6(¢) S, is indeed bounded as ¢ —o0.
(i) Thisis very similar. Normalize the subgroup as above. Ifeach ot; + ¢, 3 ; < 0 (1 <7 < n),

n
summing yields X «; < 0: a contradiction. We may thus suppose a,+a,,; > 0 and
1

1 <5< §(n+1). Nowa;+a; > Owheneverl < i < sand1 <j <n+1-—s;thusifeachd(s)S,—0
as t—>o00 we must have a = 0 for all r whenever 1 < i< s, 1 <j<n+1-s.
Conversely, if this holds consider the subgroup defined by

n—s 1<i1<s
a;={—1 s+1<i<n+l-—s
s—n—1 n+2—s<i<n

here Zo; = s(n—s)— (n+1—2s)— (n+1—s) (s—1) =0and o; +a; > Oonlyifi <5,/ <n+1-s
or vice versa. Thus indeed each 0(¢) §,— 0 as t—co.

Our conclusion may be recast in more geometrical terms. We know the system fails to be semi-
stable if and only if all invariants vanish (Mumford 1965) if and only if 4 vanishes identically
(the field of invariants is a finite extension) if and only if the net consists of singular quadrics.

CoroLLARY 1. For any linear system of singular quadrics in P, y(C) we can find subspaces
P._,(C) < P,_,(C) such that for each quadric S of the system, P,_,(C) lies in the vertex of S n B, _4(C).
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NETS OF QUADRICS 233

Conversely, one sees at once that any such quadric §'is singular.

As to the case when the system is semistable but not stable, we have a similar conclusion with a
flag P,_,(C) = P,_,_,(C). Thisis equivalent to saying that these subspaces are mutual polars with
respect to all (non-singular) quadrics of the system. Here, we observe also that the matrices are
now partitioned into blocks

s n—2s s

0 0  B]srows
4=]0 C Dl (n—2s5)rows

BT DT E|srows

so that det A = (— 1) (det B)2 det C. Hence 4 has a repeated factor of positive degree, and the
locus 4 = 0 has a repeated component.

CoROLLARY 2. For a linear system which is semistable but not stable, A is non-zero but has a repeated
Sactor of positive degree.

The converse assertion, though true for pencils and for nets of conics, admits a few exceptions
when we come to nets of quadrics, as we shall see.

1. ENUMERATION OF NETS OF QUADRICS IN C*
1.0. Preliminaries

We turn to detailed consideration of the case mentioned. It will be convenient to modify
notation slightly, and write the net as

ASy + Sy +vS,,
4 4 4
where So= X ayx;x; S;= X byxx; and S, = XN ¢y x;
ij=1 i,j=1 i,j=1

We usually adhere to this notation for the rest of the paper. We also write X; for the point
Xy = X3 = &, = 0, etc. and L, M, N for the vertices of the triangle of reference A = 0, u = 0, v = 0.

Our objective is, for each possible 4 = A(A, u, v) to enumerate the SL,(C)-orbits of nets with
discriminant 4. We omit the phrase ‘SL,(C)-orbits of’, and speak of counting nets. It is thus
necessary to normalize the coordinates (x;, ¥y, X5, ¥,) rather carefully in each case.

We arrange the possible 4 as follows. Leave unstable nets to the end; next to last we deal with
nets with a singular subpencil. The rest we classify as follows: ordinary singularities only; higher
double point; triple point. Further classification is treated in each section as it occurs.

1.1. Nets of conics

The results of § 0 will only be necded in the following form. A net of quadrics in C* fails to be
stable if and only if coordinates can be chosen so that the matrix of each of §;, S; and §, has the
form (here 0 denotes a zero entry and * that no restriction is imposed):

0O 0 0 * o o0 * *'l

0 * ® % 0 0 * =*
cases =1 ; cases =2

0 % * ok x K

* % * % %k %
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234 C.T.C. WALL

In case s = 1, each quadric of the net meets x, = 0 in a line-pair with double point at X, ; in case
s = 2, each quadric contains the line x; = x4 = 0.
Similarly, a net fails to be semistable if and only if we can reduce to matrices of forms

0 0 0 O 0O 0 o *

0 * * ¥ 0 0 0 *
case s = 1 0 * % | case s = 2 0 o0 * x|

0 * * % * ok ® %

In case s = 1, each quadric of the net is a cone with X as vertex; in case s = 2, each quadric
meets x, = 0 in the repeated line X, X,.
For the case of nets of conics, the corresponding forms are,

0 0 *
not stable: 0 * *|
* % %
0O 0 0 0O 0 *
not semistable: 0 * *| or |O O *].
0 * * * ok %

Semistable nets

Here we must have s = 1 in theorem 0.1. If the terms in the diagonal (i.e. in positions (1, 3)
and (2, 2)) are proportional, we may take each as A. This yields a unique net A(x3 + 2x, x;) +
#(2xy%5) +va2 (type H). Otherwise we have, say,

0 0 v

0 4 Gog A+ bog fh + Co3V

Vo Gy At+bogptCay v aggAt+bggfhtcamv
and may change coordinates by %] = ¥, +ax, + fxg, x5 = x5 +yx5. We choose @ and S, to make
¢o3 and cy3 vanish. If ayy = 0, choose y to make b,; vanish and set A’ = a3 A + bgg ¢ yielding
A3 + pxd + 2vx, x5 (type G). If agy # 0, choose to y to make a,, vanish and set A’ = ay5 A + bgg 1.
Multiplying all coordinates by suitable constants we can adjust to by = 1 (type F) or bg3 = 0
(type G¥).

Stable nets
Since there is no common base point with a common tangent for the whole net, we can find a
subpencil with no repeated base point, and so meeting 4 in distinct points; thus 4 has no repeated
component.
For irreducible 4, we normalize

A =—p2v+ 34 pAv2+ g3 = —plv+f(A,v) and S, = 2%, x5+ 43, §; = 2x, 4,
and then find
Sy = —xF— 2gx3 +0x3 + 2gx, 43 and  f(A,v) = (A—2gv) (A2+2gAv + (c+ g?) v2).

If A4 is irreducible, we single out one of the three roots of f; we have 3 nets (type A). If 4 has a
node, f has a repeated root, we may choose it (type B) or the simple root (type B*). If 4 has a cusp,
Jfis a perfect cube and we have just one net (type C). Enumeratively, we see that type B occurs
with multiplicity 2, and C with multiplicity 3.
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NETS OF QUADRICS 235

If A is reducible there is a singular subpencil. If this has type [;1;] we can take

So = 2.96’1 xa, Sl = 2x2 x3
and then

A = = 011 1PV + 2015 Ay — G A% + 2(615 Co3 = G35 C13) AV + 2(C45 €15 — €1 Co) % + (det C) 13;

the coefficients of 4 yield (in turn) the values of ¢4, ¢y, €555 linear equations for ¢, 55 with dis-
criminant ¢y, ¢, — ¢3, and (if these are solved) a linear equation for ¢,y with coefficient ¢;; ¢o5 — ¢2,.
Soif 4 = vA,, and v meets 4, in two distinct points, there is a unique net; otherwise, we may take
¢11 = ¢13 = 0 and the net is unstable. There are essentially two cases here: 4, irreducible (type
D*) or a line-pair (type E*), and in the latter case if we take 4, = 2u4v we obtain §; = 2x, x,
showing that the réles of the singular lines are symmetrical.

Otherwise the singular subpencil v = 0 has a common vertex —say X;. If X, lies on S,, the net is
unstable, so we may take x; = 0 as the polar of X, with respect to Sy, and ¢;; = 1, ¢, = ¢33 = O.
Then A4 = v4; where 4, is the discriminant of the net (or pencil) cuton x, = 0. Ifthisis a net, 4, is
irreducible and determines the remaining coefficients up to normalization of x,: x3; v may be a
chord of 4, (type D) or a tangent (type F*). Ifitis a pencil it must be of type [1, 1] (else our net is
unstable), and » may not go through the vertex (else our net reduces to a pencil). Thus we have a
single type (E) and 4 is a triangle. We may take coordinates to reduce it to Ax%+ g + vad.

Dr Hirschfeld has kindly supplied references to the original sources of this enumeration in the
complex case (Jordan 1906) and in the real case (Campbell 1928).

1.2. A with ordinary singularities; no singular pencil

For irreducible 4, it will suffice for our purposes to count the number ¢ of ordinary double
points and « of cusps. Pliicker’s formula gives 3 — ¢ — « for the genus, hence § + ¥ < 3: we have ten
cases. We also have the case when 4 breaks up into two conics, meeting in four distinct points.

For the less degenerate cases, a direct enumeration seems forbiddingly complex. We will be
able to predict the results with some confidence in §2; here we confine ourselves to one argument
which, though incomplete, gives a pattern which serves as a useful guideline in several cases
below.

Lemma 1.1, Suppose S, a plane-pair, so that det (AS, + uS,) has a repeated factor u. Then the other two
roots coincide if and only if Sy meets (at least) one of the planes of Sy in a degenerate conic.

Proof. This can be extracted from the enumeration of pencils, or we may proceed directly as
follows. Take coordinates with S, given by 2%, x, = 0; recall §; has matrix (4,;), and we write B,
for the determinant obtained by crossing out the ¢th row and jth column. Then

det (ASy+wSy) = utdet B— 223 Byy — A2 (byg byg— b3y).

The condition for equal roots is B3, = — (b33 b44— b3,) det B. But the right hand side coincides
(by a standard determinantal identity) with B3, — By; By, so we have either B;; = 0 (and the
intersection with x; = 0 is degenerate) or B,, = 0.

Now consider a net ASy+ ) +vS, with S, a plane-pair. Then 4 has a double point at L, and
the equation for tangents from L to 4 is obtained as above (with S, + »S, replacing MSy), s0is a
sextic in :v which splits as a product of two cubics, corresponding respectively to degenerate
intersections with the two planes of §,. If we are given 4 but not the net, we have the set of six
tangents, and there are ten ways of partitioning these into two sets of three. We may thus expect
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236 C. T. C. WALL

precisely ten nets with discriminant 4 and L corresponding to a plane-pair; and if 4 has no
further singularity this is indeed the case.

We shall find in more degenerate cases that an otherwise mysterious enumeration can be seen
as a special form of this partitioning of the set of tangents.

Here, a further point comes up. If 4 has a further double point M, it is desirable to know whether
the corresponding quadric of the net is a cone or a pair of planes. Provided the line LM is not a
component of 4, we find that it counts with multiplicity 2 among the tangents from L to 4. Clearly
if §; is a plane-pair it meets both planes of §; in degenerate conics, so LM belongs to each of the
systems of three tangents from L to 4. Conversely suppose LM belongs to both sets, and meets 4
again at M. If §; is a cone, as it meets both planes of S, in line-pairs its vertex must lie in each
plane. But this point is then a common vertex of §; and $;, hence of all quadrics of the pencil they
define, contradicting our assumption that » = 0 is not a component of 4. This proves

Lemma 1.2, A net with plane-pair corresponding to a double point L of A induces a partition of the set of
tangents from L to A into two sets of three. A further double point M, such that LM is not a component of A,
corresponds to a plane-pair if and only if LM belongs to each set.

Now suppose 4 has three distinct double points.

These cannot be collinear (else their join would have to be a component of A): take them as
L, M and N. The standard quadratic transformation (A, #,v) - (1/A,1/pu, 1/v) now takes 4 to a
conic 2: we may assume X passes through none of L, M and N (else 4 would have A, porvasa
factor).

Aisirreducible if and only if X'is: it has an ordinary node at L unless 2’ touches A, when it has a
cusp there (similarly for M, N). If 2'is a line-pair, 4 is a pair of conics: they meet in 4 distinct
points unless the vertex of 2 lies on Auy = 0—say on A = 0—when the conics touch at L, and
meet again in M, N. If X'is a repeated line, 4 is a repeated conic. We shall include these special
cases also.

As A has double points at L, M, N its equation has the form A4u2v? + By2A% + CA2u? + 2A v (FA +
Gpu+ Hv) = 0. The matrix of 2'is then

4 H G
H B F
G F C
We have the restrictions 4 # 0, B # 0, C # 0 and the conditions for cusps at L, M, N are
respectively BC=F2 CA=G, AB=H"

The pencils v = 0, etc. have discriminant ¢A%u?, where ¢ # 0, hence have type [2, 2],[2, (1,1)] or
[(1,1), (1,1)]: this is determined by whether vertices correspond to cones or to plane-pairs. We
adopt this as our main principle of classification.

1.2.1. Case of three plane-pairs
We may take S, = 2x; %5, §; = 2x3 %, and then
Sz = 2(d1x1 +azx2+a3x3+a4x4) (b1x1+b2x2+b3x3+b4x4).

Since the four planes of S, S, are in general position, ag b, # a,b,: similarly a, b, # a,b,. Coordi-
nates are unique up to interchanging x, and x, (or x; and «,) and

’

r A | ' —
X1 =Py, Xp = pTiN, Ky = 0%, Xy = 07lx,
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A direct calculation (note that the terms divisible by »* are known to cancel) shows that 2 has
matrix

(ayby—ayb,)? H ay by +ay by
H (a3by—aybs)® ayby+ayby
a; by +a,b,y ayby+ay by 1

where
H = 2(a,by+ayby) (a3bs+agbs) — (ayby+agby) (ayb3+asby) — (ay b+ agby) (ay 04+ aybs)
= (ayby+ayb,) (agb,+a,bg) — 2(a; a3 by by + b, byazay).
Thus det X' = — 4(ay a5 b3 b, — aga, b, b,)% Moreover,
Lisacusp <-asa,b30, =10
Mis a cusp<>a,a, b, b, = 0,
and N is a cusp < (a;, by — a4 by) (a3 03— agby) (ay by —azby) (ayby—ayb,) = 0,

more geometrically, for L to be a cusp both planes of S, one of §; and one of §, must concur;
similarly for the others.

For enumeration, we must be a little more careful. The matrix X' determines a, b, +a, b,
agby+agbs,aya,0504+aza,b, by and, up to sign, a,by—ayb, and azby—a,b;. Thus we have
the pairs (a; by, a5 ;) and (agby, a,b3): interchanging coordinates if necessary, this determines
ay by, ag by, azb, and a4 bs. Moreover, we know the product of all, hence can solve for the pair
(ay 85 b3 by, azay by by). Interchanging the a; with the b, (if necessary), we thus know a, a, b3, and
agay by by As we can adjust (using coordinate changes) by p, o; also use a} = a;7, b; = b; 7! we
can in general normalize all these values by b, = b3 = b, = 1, when all the rest are determined.
Similar arguments cover the cases when certain a;, b; vanish; with the exception of the case
when @, b, = 0, a;b, = 0 and a, a,b3b, = azayb, b, = 0 when there is insufficient data to deter-
mine whethera, = a; = Oor b, = b, = 0. However, even here these cases are seen to be equivalent
on interchanging x, with x,, x; with x, and the as with the s. We thus obtain a unique net in all
cases.

If there are no cusps (indeed, if L, M are not cusps) no coefficients vanish. If L is a cusp,
agaybyby = 0. The various cases being equivalent, suppose a3 = 0. From azb, # a,b; follows
that g, and b, are non-zero. If moreover det X' # 0 then a, a, 6,5, # 0. Thus the only other coeffi-
cients that may vanish are 4; and b,: both cannot be 0 together, and one is if and only if M, too, is
a cusp. Suppose a3 = by = 0: then N is a cusp if and only if @, b4 — a, b, = 0. Thus each case does
occur: uniquely, as was noted above,

In particular we have a stable net for the case when 4 is a repeated conic. We may verify that
we have the net of quadrics through a twisted cubic curve.

Consider finallywhat happens to the fourth node in the singular case. Here a; a,0,04 = aza,b, b,;
the vertex of 2 is the intersection of

v+ (agby+agby) p+ (@ by+ay0)) A =0 and @ aA+aza,p =0
(the same as by by A+ by by o = 0). As this does not lie on Auy = 0, the a; and b; are all non-zero.
N _ _ _
v So = 20iyes S = 207, S, = 29 vE
where Y& =%, YT =As Yy = Gkt ag Xyt agXytanxy

Yo =Xy YU =Xg Yz = byiX tboxy+b3xg+byxs

16 Vol. 289. A.
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Set Y5 = @y a3 b3 Xy + by Xy + by X3+ a3 lay by Xy,

YT = agby b3y + @y Xy + Ay X3+ @y b3 0y Xy,

Since a, a, b3 b, = a5 a, b, by, we see that yg, y5t, y32 and y§* are concurrent whenever €€, 6,65 = — 1:
. . -1 1 by by by b .
we have a pair of desmic tetrahedra. The vertex (—-—, — = —1+—2——3———i‘) of X yields a
4,4y aza, a, @y ay a,

node (—a, @y, a3a,, ¢~1) of 4 corresponding to §" = Sy + @ (az a, Sy — a, @, 5,). It is now easily seen
that 2y5y5 = ',
1.2.2. Case of two plane-pairs and a cone

Let L correspond to the cone: take S, = 42 + 2x, #3. Then (cf. lemma 1.1) each of S;, S, is com-
pounded of a plane not through the vertex and a non-tangent plane through the vertex. We may

thus take 81 = 2%1(ay %y + @y Xp + A3 X5 + Gy %y)
Sa = 2%4(by %y + by % + b3 x5)

where a, # 0, b2+ 2b, b5 # 0 and, as the four planes are in general position, a, by # a4 b,. We find

(a2 65— a3 b,)* 2aybyb3—by(ay by +asby)  —ay(abs+asbsy)
2 = |2a1by 05— by(ay b3+ a3 by) b3+ 20,04 agh, )
— (a5 b3+ a3 b,) ay by a3
with det X' = — 4a, b3 b3(a3 + 2a,a5). However, if (for example) b, = 0, the line x; = x3 = 0 is

common to all quadrics of the net, which is thus unstable. Hence @, 63563 # 0, and X is non-
singular unless a2 + 2a,a5 = 0. Since b,, by and ¢, may not vanish, there cannot be a cusp at L and
the conditions for cusps at M, N reduce respectively to

ay 3 = O’
(a2 b3—azby)® = 2(ay by— ay by) (ay by— ag by).

Again our unsymmetrical choice of coordinates leads to apparent complications here: we have

(s2y) Sy = 21175, Sy = 2%y,

where y; = x; does not go through the vertex of §;; x; does. A unique linear combination
z = y, — a,y5 does pass through this vertex; M is a cusp if z = x; = 0 lies on S, and N is a cusp if
z = x5 = 0 does. The criterion for 2 to be singular is that z = 0 touches S,. Thus projecting from
X, we have the conic S; chords #; = 0, x; = 0 not meeting on X,, and a further line z = 0 which
may be tangent or pass through one or more of the intersections of x; = 0, x; = 0 with S,

We may still change coordinates by x5 = px,, #3 = p~lx5: we normalize p (up to sign) by requir-
ing by = b,.

Given Z, we may determine a, (up to sign, which we can deal with by changing signs of
X1,as,a3) and then, in turn, by, by, aybs+agby (recall a, # 0!), @, (recall byby # 0!) and
ayby—agby. As by = bg, by by determines it up to sign (which we can deal with by takingp = —1);
then we know @, + a5, @, — a5 and thus have a unique net. Recall this is so for all 2 meeting A = 0
in two distinct points: X may not be a repeated line, or a line-pair with vertex on A = 0.

If a3 + 2a, a5 = 0, 2'is a line-pair with vertex

(@4, —ayay, 0 by +ay b3+ agby),
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as it reduces to {ay v + by p— (a5 by + a3 by) A} +2b, ba{p + ay A2 If A has four distinct nodes, the
further node of 4 corresponds to the quadric

1848y + (81 by +ay by +ag bs) (a5, — 5y).
The cofactor of the first term is ad a2 by by(ay by + a5 b5+ a3 by)? # 0 since by by # 0 and the vertex

of 2 does not lie on Auy = 0. Thus we have another cone.

1.2.3. Case of a plane-pair and two cones

Take the plane-pair at N, and the pencil » = 0in standard form for type [2, 2]: .S, = &3 + 2x3 x5,
S = x3+ 2%, x,. Then (lemma 1.1) S, contains a plane through the vertex of each; these cannot be
the same plane else the line x, = x3 = 0 would be common to the net. Thus we take

Sy = 2(a; %1 + g X+ a5 %3) (by Xy +b3xg5+byxy).

Another straightforward but tedious calculation yields

2= ayayb3by—2a, by a3, — 3t b} a3 b3+ 2a, a3 b} a5 by,
a; by ay b,y 1

det X = — a3 b3 {20, a5— §a, b,}2.

Note a, # 0, b, # 0and a3+ 2a, a, # 0, b3+ 2b, b, # 0. So X'is singular if and only if a, b, = 4as by,
and the respective conditions for cusps at L, M and N reduce to a3 =0, b, =0 and
(36, by— 2a3 b,)% = (ay by +2ayb,) (a3 b4+ 2a3b5). If all three are cusps, a3 = by = 0 and a, b, =
4a,by. Now X determines a, by, ay by, ay ayb3, a2 by b, and a3 b} + 4a, by a3 b,: say these have values
a, B, 7, 6, 6. We can suppose a; = 1 (replace a; by a;ar%, b; by b;b,): then by = a,a, = 7,
ag = yx~2, b, = 6x~1 (where x = b,) and € = 12 + 4y8x~2; thus +*—ex? 4 4yd = 0. Each value of »
yields a unique net; moreover, + x yield the same (change the signs of %, and x,). These two nets
are in general different, but coincide if €2 = 16y4, i.e. if Z'is singular. Moreover, only non-zero
roots are acceptable: both roots are non-zero for y¢  0—i.e. L, M not cusps—otherwise one is
zero. We thus have 2 nets if L, M not cusps, 2 non-singular; 1 net otherwise, with 2 non-
singular, or for X a line pair with vertex not on Az = 0; otherwise no nets.
When a, b, = 4a5b,, 2 becomes

(vagbypt+a by A)2+2byb4(a A —2a300)* = 0,
with vertex at (2ag, a;, —a,(2a; b; + a5 b,)). When these coeflicients are all non-zero, 4 has a fourth
node, corresponding to 2a;Sy — (a5 by + 2a3 bg) (a5, + 2a3.5;), or equivalently to
(A, s v) = (a1 b3+ 205 by, a5 by + 203 b5, — 1).
This yields the plane-pair

($ay %y — a3 %3 + 2a3 %4) (2by %1 — by % + §b4 43) = 0.

1.2.4. Case of three cones
This case is distinctly more complicated than the preceding. We again take Sy = &3 + 2%, x3,
S, = x2 + 2%, x,. The vertex of $, lies on S, and Sy, but not on the line x, = x; = 0 (else this would be

common to the net), hence is of the form (a?, — 228, — 204%, %): we normalize coordinates by
16-2
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taking it as (1, —2, — 2, 1). The equation of S, can thus be expressed as a quadratic in 2x; +,
2x4 + x5 and x, — x50 sAY
0 = a(2x; + %) + b (204 + X5) %+ ¢ (0 — x3)?
+2f (204 + x5) (%5 — Xg) +28(201 +&3) (x5~ %) +20(2x1 +%5) (224 + %3).
Since S, passes through X, X, we have ¢ = b = 0; since it does not contain the line X, X,  # 0:
indeed, since it is a cone we have ¢k + 2fg # 0 also.

The evaluation of the determinant for 4 is less tedious if we recall that we can ignore terms
divisible by 3, which are bound to cancel. After reduction, we obtain

4(g—h)? 4H  2(g+h)
T| aH af-Rp 2,

2(g+h)  2(f+h) 1
where H = — b2+ h(f+g) +fg+ch. Since & # 0 and ch+2fg # 0, the respective conditions for
cusps at L, M and N reduce to

f=0, g=0 and c¢+2(f+g—h) =0.
- —4gh ch—2m) .
det X _16det[dl_2h2 iy ] — 16k {16fg— (c— 2h)2).

We observe that if L, M, N are all cusps, f = ¢ = 0 and ¢ = 2h. But then det X' = 0. Thus this case
does not arise.

We now consider enumeration. Since we have fixed coordinates more rigidly than usual, we
should allow S, = d(x% + 2x, x3), S; = e(x5+ 2x,x,). Then if

a By
=g & e,
y € ¢

we have § = d%?, € = 2d%(f+h), v = 2de*(g+1h), 0 = 4d*(f—h)?, a = 4¢*(g—h)? and S = 4deH.
Choosing signs of square roots of a, & and § then yields values for de,d( f— &) and e(g — &) hence also
(as de # 0) of d(f+1) and ¢(g + k), so of df, dh, eg and eh. Once de, dh and ¢k are known (and all
non-zero) a further square root determines dek, hence d, ¢, h and then fand g; finally £ yields a
unique value for ¢. This appears to yield 16 cases, but as ¢, d, ¢, f, g and £ may be multiplied by a
common fourth root of unity without affecting X, this number should be reduced to 4.

However, if M is a cusp (o = y?), one system of choices for square roots will yield ¢ = 0, so the
number of cases is reduced from 16 to 8, hence finally from 4 to 2; similarly if L is a cusp, whereas
if both occur we end with only one net. The same occurs if N is a cusp (we noted above that one
system of choices of signs leads to a contradiction); we have already seen that all three cannot be
cusps.

These conclusions hold also for the singular case (where of course we may only have one cusp,
else 2'is a repeated line, leading to the same contradiction as for three cusps).

For future reference, we now summarize the enumerations of this section.

TuroreM 1.3, For A with double points at L, M, N, but no linear components, the enumeration of (stable)
net is as_follows:

Sos S1, Sy plane-pairs: one net for each A.

Sy a cone Sy, Sy plane-pairs: no nets if Liis a cusp (or worse), otherwise one net.
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So, Sy cones Sy a plane-pair: two nets if A irreducible and L, M simple nodes, one net if A irreducible
otherwise, or two conics touching (if at all) at N; otherwise none.

Sos 15 Sy cones: four nets if A has no cusps, two if one cusp, (including case of two conics touching), one if
two cusps and none if three cusps.

Moreover, if A consists of two conics meeting in four poinis, the number of points corresponding to plane-pairs
is even.

This final conclusion is the first of several parity conditions which will be of considerable interest
in later sections.
1.3. A with a higher double point: no singular pencil

If 4 has a double point at N, with coincident tangents A = 0, we can write

A = v22+0fy(A, 1) + /oA, 1),

where f; is homogeneous of degree :. If the coefficient of vu3 is non-zero, we just have a cusp. Now

write
BfolA 1) = 0N+ dN%p + e g

then the substitution v = v +¢A + du reduces ¢ and d to zero. We thus take as our normal form

A = (vA+eu?)2+ Fy(A, p).

We shall suppose that A has no linear factor, i.e. that the coefficient of % in F, is not — ¢2, but not
thatdisirreducible. Somewhat surprisingly, it is relatively unimportant whether or not ¢ vanishes;
cases will be classified according to the root pattern of F, noting that A plays a special role.

We can easily list the types of singular point that occur. I will use Arnold’s (1972) notation for
these. Then a singular point is of the indicated simple type if and only if the function can be
reduced by local analytic coordinate change to

Ay Byt
D, x% 4yt
Eg: a3 +yt Epad+axy® Egxd+4y5

and we will need also the unimodular type Eq: %+ Ax2y2 + y%. We shall be mainly concerned with
the double points A, : for example, A, is a simple node, A, a cusp, A a tacnode, A, a rhamphoidal
cusp and A, an oscnode.

A factor 4 + aX of multiplicity r in F; meets the conic vA + eu? = 0 (orife = 0, thelinev = 0)ina
singular point of type A,_; whereas if the factor A itself has multiplicity r (here ¢ # 0ifr > 0), the
singular point N is of type A, ,,. (0 < 7 < 4). If the root pattern of Fis of type 22 or 4, Fis a per-
fect square and 4 splits into two conics. We even allow F = 0 (provided ¢ # 0), for a repeated
conic, but only consider stable nets.

The line A = 0 has fourfold intersection with 4 at N. It thus determines a pencil of type [4]
[(3,1)] or [(2,2)]. We treat these cases in turn.

1.3.1. If S, is a cone, take its equation as x3 + 2x, x; = 0. Evaluating det (AA, + p#A, +vA,), the
coefficient of »3 is @y A+ by pt, 50 ay4 = byy = 0. The coefficient of V2 is now (@yg A+ bog )2+
2(@4 A +byy pt) (@gq A+ bgyq ), which must equal A2 Thus the polar plane Xb,, x; of the vertex X,
of S, with respect to §; touches S,, and 2z, x, passes through its line of contact. We change
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coordinates to take these planes as x5 and x, respectively; this fixes x;, ¥, and x5 (up to scalars).
Now set xy = x, + 0¥y + Bxy + yx3 and choose «, B, v (uniquely) so that a;, = 0, by = Oanda,g = 0.
This fixes coordinates, and now

a3 A+by o byspt aygA+bygp+v 0

A = det byt Ago A+ Doy pt +V 0 A
Gyg A+ byg b+ 0 g A+bgg o 1z

0 A Y22 0

= — A%(ayy A+byy 1) (a3 A+ bgg pt) — (813 A+ byy 1) (Gga A+ boa e +v)
F1818 A%+ byg A —byp p? + AV},
For the terms involving v to be as desired, a,5 = 6,3 = 0, b;; = 0 and 2¢ = —a;; — 2b,,. Then
—F = ay,{ags A*+ by3 A3t + gy A2pP + bop Ap6® + (bys + 1ayy) 1%}

Note thatif a;; = 0, the line x, = x; = 0 is common to all quadrics of the net, which is not stable.

We solve as follows. The coefficient of 44 in 4 (not in F) determines &, up to sign: as it is non-
zero, there are two cases. Next, 2¢ = —a,; — 2b,, determines @,,: at least one value for which is
non-zero. The remaining coefficients of /' then determine the remaining parameters uniquely.
We obtain two nets except when the coefficient of #4in 4 is €2, i.e. when A divides F, and then there
is only one net.

These nets contain no plane-pairs; for the 3 x 3 minor which is cofactor to as5 equals — a;, A3,
and we haveseena,; # 0. On A = 0 there are no plane-pairs by hypothesis. The net is stable even
when 4 is a repeated conic. In this case, it is the net of quadrics through a twisted cubic.

1.3.2. We turn to the case when S, is a plane-pair, and take it as 2xy. The coefficient of ¥2in 4
is then (minus) the discriminant of the pencil cut by AS,+u$; on x =y = 0. We can thus

6’:{ 3] To normalize further, set 2’ = z +ax + Sy,

" = t+7yx+ 0y and choose «, #, vy and ¢ to make a,4, = @54 = @,5 = @53 = 0 (where, as above, §; has
matrix a;; and S, matrix b;;).
Then

choose z and ¢ so that this pencil has matrix [

apA+byp apAtbppt+v bigp bigp
A = det Qe A tbia etV A Atboape bogp by _
bz pe bos 1o ch A
baapt bag 1t A 0
Half the coeflicient of » must equal eAp?. Thus

@aA+byapt bogpe bogp
—eAp? = det big e cth A
bip A 0

Equating the coefficients of A3, A%u shows @,y = b, = 0; and from the coefficient of 43, b,4 byy ¢ = 0.
For a pencil of type [(3, 1)] ¢ # 0. The roles of b4 and b,, are symmetrical (interchange x, and x,)
and we suppose byy = 0. Then ¢ = — by3 5,4, and

A = (AV— b1y bog 1?)? — (@ga A + b 1) {813 A3+ byy A2 — 2b15 b1 Ap? + b3 cps®).

Thus one of the roots of F is preferred. Since we cannot have ay, = by, = 0 (again an unstable
case: ¥, = x5 = 0 is here a common line), and are still free to normalize coordinates by x; — ax;,
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Xo—> 710y, X3 fxg, ¥,—> f~1%, we can use o to adjust the multiplicative constant in the factor
Qg9 A +byy pr uniquely. The coefficients in 4 now determine @y, byy, b14D95, 013014 and b3,c. We
can use /£ to adjust b;, = 1 and then solve uniquely for b,5, b,3 and ¢. There cannot be a solu-
tion with b,, = 0 here, since this would imply 4 divisible by A. The requirement ¢ # 0 implies
that none of the unselected factors of F' is A. Subject to this, we have one net for each choice of
factor.

The cofactor of the leading term equals — A2(@g A + by 1) For a plane pair (other than S,, on
A = 0) this must vanish, s0 @y A+ byt = 0 = Av +ep? Conversely, if ayy A + by p is indeed a
repeated factor of F, then by lemma 1.2, the rank of the corresponding quadric is indeed 2.

1.3.3. For the final case—a pencil of type [(2, 2)] —we have ¢ = 0 above, and may not assume
that b,, (or b;,) vanishes. The other normalizations still hold, and — ¢ = b, byg + by3 byy. The terms
not involving v form

ap A +byp 0 bigpt  buap

det 0 Aga A +bos o bogpt Dot
bygp bas tt 0 A
L bun bag pt A 0

so
A = {Av— (byg bag + b13 bag) )2 —{@1 A%+ byy App— 2b13 b4 17} {19 A + bog Apt— 2b35 by 1%}

This time we have a partition of the factors of F into two sets of two. The order is insignificant:
we can interchange x and y. Neither factor may vanish identically. For if, for example,
ay; = by, = by3 = 0, then x, = x, = 0 is a base line of the system, which is unstable.

Now suppose given 4 (not a repeated conic) and a partition as above. We may use x; = ax;,
xh = o~ lxg, x5 = fxg, x4 = f~1x, again for normalisation. Using a, we can adjust the factors by
reciprocal scalars, and so suppose known

11, D115 B9y b9y D13 b1ay bag Doy AN 14 bog +byg boy.

We thus know (51455 —b13054)% = (D14 023+ 15 b24)® — 4b13 b14 bag bag, hence bygbog—by3byq up to
sign, and hence b, by3 and b,3b,, up to a possible interchange. As this interchange can be
effected by interchanging x and x,, we may suppose all four products known.

If any of the four—say b3 4,, = t—is non-zero, we can use f to normalize b3 = 1, b;, = ¢ and
then uniquely determine by = b3 0oy and byg = 17103 bog. However, if b1gbyy = bogbyy = by4 oy =
by3bsg = 0, then A%is a factor of 4: an excluded case. Thus in all cases we obtain a unique net.

To seek further plane-pairs in the net, equate to zero the cofactors of the (1, 1) and (2, 2) terms;
obtaining

0 = — A(@ap A2+ bypApt — 2b53 byy p?) = — A(ayy A2+ byy At — 201351 47).
Since A # 0, A: g must belong to both sets of factors of #. Conversely, by lemma 1.2 the intersection
with Av +eu? = 0 of such a line does indeed correspond to a plane-pair.

The enumerations of this section may be summarized as follows:

TueOREM 1.4. For A with a higher double point and no linear factor, nets are enumerated as follows:

If the pencil X = 0 has type [4] there are two nets for each A, except when A divides Fy when there is one net.

For type [ (8, 1)], there is one net for each selection of a linear factor of Fy, provided A is not an unselected
Sactor.

For type [ (2, 2)], there is one net for each factorization of Fy into two quadratic faclors.
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1.4. A with triple point; no singular pencil

There are three essentially distinct cases, determined by coincidences of tangents at the triple
point. We normalize the triple point as N, so that 4 = vf3(A, p) +f4(A, u) where we can take f; as
Ap(A+ p), A%u or A% respectively in the three cases mentioned. The point is correspondingly a
singularity of type D,, Dy or Eq. 4 is irreducible if and only if f; and f; have no common factor.
There can be no further multiple point, else the line joining the two would have five intersections
with 4.

First suppose S, a cone, with vertex X,. Ifuy, u, are the polar planes of X, with respect to S, §;
then (as in the case above) since the coefficient of v vanishes, each Ay, + pu, is a tangent plane to
S, through the vertex. This implies that some such expression vanishes identically. But then X, is
also a vertex of ASy + uS;, and we have a subpencil with common vertex. Hence this case cannot
arise.

Next take S, as the plane-pair 2x; x,. Again as previously, since the coeflicient of ¥ vanishes the
trace of AS,+ uS; on ¥, = x, = 0 must be a degenerate point-pair for each A, x. This cannot
vanish, else the line would be common to all quadrics of the net, which is then unstable. Hence
there is a fixed point—say X, - on the line. We now have

ap A+byy e A +by i +v G A+bigp Gy A+bygp
A = det a1 A +by itV Gga Atboop U3 A+bog b Gog A+boy )

a3 A+ by g3 A +bog g3 A+ by 0 0

A A +bypo Aoy At bog 0 0

The coefficient of v is 2(@4 A+ bygpt) (@a4 A +boytt) (33 A+ bgz ), so these terms give the tan-
gents to 4 at N. Observe that if a;, A +by4 4, 94 A+ byy gt represent the same tangent, they are
proportional, so 4 is divisible by (a4 A + b4 #)? (in fact, the net is unstable). So these are distinct
tangents: normalize them as A and x respectively, and suppose (interchanging A and #, x, and x,
if necessary) a43 # 0. Normalize coordinates further by

Xy = Xyt oy + fry, Xy = xy+Yxy + 0%y 46Xy,
where we choose «, £, 7, & and € to make

@13 = 0,893 = 0,b,5 = 0,a;5 = 0,by5 = 0.

Then Gy A+byyp v big e A
A = det v g A+bog e 0 n

bigpe 0 aggA+bgzpe O

A 2 0 0

= D3t + (@a A+ by o) {22000 — A2(@gp A+ oo 1) — 2 (@13 A+ byy ) }.

Then given fy(A, 1), as we know @33 A+ bzt and agg # 0, the coefficients ayy, b9y, @4y, b, are
uniquely determined, and hence also 4%;. The choice of sign of 4,4 is cancelled by changing the
sign of the coordinate x3, so we have a unique net. More precisely, given 4 choose one of the
tangents at N to play the role of agg A + b33 4. The other two must be distinct: call them A and p.
Their roles are symmetrical (we can interchange x, and x,). The argument now yields a unique
net.
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Lastly suppose S, = &} a repeated plane. The coeflicient of v is then the discriminant of the
pencil of conics cut on S, by S, and §;. For the case of distinct tangents, the pencil has type
[1,1, 1] and normalizing coordinates in x, = 0, we have

A 0 0 G1a A+bygpe
0 H 0 gg At oy 1
0 0 A+p gg A+ byt

Ay A +bigpt Ao A+bygpe Gy A tbgyft gy A+byype+v
Set x] = xq +axy, x5 = %3+ yx, and choose «, £, ¥ so that 0 = a4 = by, bgy = — az,. Then

A = 2p(A+p) (aga A+ bag pp+v) = big 3 (A+ 1)
— @ BN+ 1) = a3y (A = )2
= VAU(A +p) — @34 A* + A (agy — 03, — a34)
+ 2203 (@44 + bag + 265) + A (bag — by — afy) — big st
which determines ayq, b44, b34, 434 and aj4 uniquely. As usual, we can change signs of coordinates,
so we have a unique net.

If there is a repeated tangent (A% x), and we try a pencil of type [(1,1) 1], we find A divides 4.
Hence the pencil must have type [(2,1)]:

0 A 0 Ay A+ byt
A " 0 gy At bogpt
0 0 " agq A+ byt ’

Ay A +bypt Gy Aty Ay Atbgapt Ay A+byp+v
where we can normalize a,; = ayy = bgy = 0. Thus
A = = N2p(agq A+ byg po+v) + A%(agq A)2 + 20(byg jt) (boa ) — 12*(b1 10)?
= — A2up + a8y At — ayq A3 — byy Api® + 2by bog Ap® — b3y i

Since the coefficient of % in 4 cannot vanish, we deduce again that we have a unique net.
Finally if all three tangents coincide, we have (as before) to exclude the pencil of type [(2,1)]
(and the degenerate case [(1,1,1)]) so must have one of type [3],

0 0 A Ay A 4Dyt
0 A 4 Aga A+bog 0
A 4 0 g A +bygpt

Ay A+ byt Ao A+bogpt GgqA+bggpt @A +bygp+v
where we may normalize a,, = a5y = a3, = 0. Thus
= — A3(agy A+ bag pr+v) +202(byg pr) (bsa r) + A2(bga )2 — 221 (b1 10) (b 1) + 12 (b1a p0)?
= — A3V — @y A3 — by A3+ (B34 + 2b14 bayg) A2p® — 2b14 bog Ap® + 034 p*
and we may conclude, as before, that for each irreducible 4 we have a unique net.

TrueorREM 1.5. If A is irreducible, with triple point N, there are no nets with Sy a cone; for Sy a plane-pair
there is one net for each choice of tangent at N such that the other two tangents are distinct: for Sy a repeated
plane, we have a unique net.

17 Vol. 28g9. A.
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1.5. Case of singular subpencil

1.5.1. This splits into two main subcases. First suppose the singular subpencil has a common
vertex. We may take the subpencil as A = 0 and the vertex as X,. If X, lies on S, either it is a
vertex and the net is not semistable, or we can take the tangent plane there as x; = 0 and have one
standard case for unstable nets. Otherwise, let x; = 0 be the polar plane of X, with respect to S,

SO we can write
So = 43+ 5

where Sy, like S, and Sy, does not involve x;. We can thus classify this as a net (possibly degenerating
to a pencil) of conics, but noting that the subpencil A = 0 plays a special role; if the discriminant of
the net of conics is 4,, then 4 = A4,. Clearly this net, plus the specification of a subpencil,
determines up to isomorphism our original net.

If the plane net has A = 0 as a singular subpencil, A2 divides 4. If the subpencil has a common
vertex x5 = x4 = 0, then any point of the line #3 = x, = 0 is a common vertex of the quadrics .S,
and S, and some point of the line lies on S, so our net is not semistable.

We recall from 1.1 the features of the classification of nets of conics. There are four types with
4, irreducible (A, B, B*, C); five types where 4, is reducible but has no repeated factor (D, D*,
E, E*, F*); four semistable types (F, G, G*, H) and two (I, I*) which are not semistable. First
consider cases where 4 has no repeated factor. For each case A4, with 4, irreducible, we find one
net for each net of conics corresponding to 4;. However, when 4, is reducible, the choice of A may
not be unique. Now the singular subpencils of nets of conics of types D, E, F* do have common
vertices; those of D*, E* do not. Thus if 4 has irreducible factors of degrees 2, 1, 1 we may choose
either or both of the lines to correspond to pencils with common vertex, provided that a singular
line tangent to the conic does so. If 4 has four linear factors, either just one has a common sub-
pencil, and we have a net of type E*, the others forming a triangle; or all four have common sub-
pencils, and we have either a net of type E or a degenerate net with one conic given by 0 = 0.

Now consider cases when 4 has a repeated factor, but the net is stable. If the net corresponding
to 4, is not stable, we may suppose all the conics of the net have tangent x, = 0at X,. But then the
same holds for our net of quadrics, which is then also unstable. There remain only the cases when
the net has type D* or E* and we ‘add’ as subpencil a pencil already singular. It may be verified
directly that these nets are both stable.

There are thus just three types of stable net such that 4 contains a repeated component: the
two just obtained, and the net of quadrics through a twisted cubic. The two new ones:

2A%y Xy + 2uxq Xg + V(2% Xy + %% + 23)
2%y %y + 2K Xg + V(2% Xy +43),
both consist of quadrics with a common conic x3 = 0, 2x, ¥, + 7 = 0, and it seems apposite to
enquire about nets whose base locus has positive dimension. If this locus contains a plane the net
is not semistable; if a line, it is not stable. The only remaining possibilities are a twisted cubic,

yielding the unique net just mentioned, and a conic. Nets through the above conic are all con-
tained in the linear system

Xg(200%y + 2%y + Vg + 20%,) + €(2%y Xy + X3,

with discriminant €?(2af + 6% — ye), so 4 always has a repeated factor. Observe that such a net
contains a pencil formed by x; with a pencil of planes. If the axis of this meets the conic, this point
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has a common tangent plane for all quadrics of the system, which is then unstable. If the axis
meets #; = 0 at a point not on the conic, we can choose the point as X, and then quickly reduce
to one of the two above nets.

We tabulate the results from this subcase as

THEOREM 1.6. Stable nets having a subpencil with common vertex are classified as follows: if A = A4,
with Ay irreducible, we have one net_for each net of conics with discriminant A,. If A consists of a conic and two
lines, or of four lines the net is unique when we know which lines correspond to pencils with common vertex. In the

Sormer case this includes at least one line, and any which touch the conic. In the latter case we either have just
one line (the others forming a triangle) or all four.

There are just three types of stable net corresponding to A with a repeated component; in each case, the base
locus has dimension 1.

1.5.2. Now suppose there is a singular subpencil, but none such with a common vertex. As
there is only one such type of pencil in this dimension, we can take

4
So = 23+ 205x5 Sy =251y Sy = X a;%:%;.

t,j=1
We first compute
A+a v apv a3V A1V
A= det| %2V Q9o V Atays  p+ayv
AV AtagV gV 34V
GV ptayv  ayV Gy V

A = v{— a4y A+ 2054 X% — aga Ap®} +v2{(a34 — 011 @gq + 2054 3q — 2053 044) A
+ (201 @34 — 2013014 + 2053 34— 2054 G33) At + (aF3 — @y Ag3) 1%}
+ V3 (A — 2A53) A+ 2A,, 1} + (det Sy) v,

It is clear from this that the intersections of S, with the line x; = %, = 0 on §, n §; are important
to the classification: it is also important to know if either lies on the other plane x, = 0 of §;. Since
the line may not lie on Sy, we have four cases, according as the line meets S, in two points or touches
it, and whether X; lies on S,.

For enumeration, we also need to observe that the normalization of §, and §; does not yet fix the
coordinates x;, even up to scalar multiples: we may still substitute

’ —_— ’ — ’? — 1 ’ —_—
Xy = Xy +PXy, Xy =Xy, Xy =—pXy—§phat+Xg Xy =Ky
We can work out the effect on the a;;; in particular,
’ — ’ — 14 —_ 2
ay3 = Gy3— 2pazz and  ayy = Gy —pdgy, 1y = dyy — 213 + pPas;.

In the two cases when agy # 0 (i.e. X, is not on S,) we will normalize coordinates by a3 = 0.
We now suppose 4 = vA4,, where 4, is a given cubic through M:

Al = bl/\3+bz/\2,u+b3/],u2+b4/12V+b5/\/l/V+b6‘u2V+b7/\V2+b8/l/V2+b9V3,

and seek by equating coefficients to find how many nets of the above type have discriminant 4.
First suppose b3 # 0. Then agg = — b3 # 0 so0, as above, we can normalize coordinates xy, xs,
X3, %4 by @35 = 0. The only possible change remaining is x; = — x;. Moreover, M is a simple point
on 4,; the tangent there is not v = 0, so may be chosen as A = 0; thus b = 0.
17-2
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We seck to solve for the a;; the equations
by = —ay, by = 2ay, by=—as, a3= 0 (normalize),
—_ a2
by = a3 — 11840+ 2(034 034 — A33a4)
bs = 2(ay 34— 13 814) + 223 Q34 — G54 T33)
— 2
by = a%3—ay as

by = Ay — 24,3, by = 24,, and by = detS,.

Since a,3 and bg are normalized to 0, this equation yields a,; = 0. Now suppose a3, = z known;
then the equations for b, and by may be solved for a,3 and a,, in terms of z and the b;, provided the
discriminant & = @g3a,,— a}, = b,b3— 1b3 does not vanish. Next, dyy = @156,4 455 (since ayq =
a,3 = 0),so we obtain a,,a,, = — bg/2b3, and the equation for b, will determine a,, in terms of the
remaining a;; (since it has coeflicient ) provided § # 0. By eliminating all of these, the final equa-
tion yields an equation for z: if z # 0 we obtain ,,, and hence a,,, up to (simultaneous) change of
sign, which corresponds to changing the sign of x;. Thus for ag3 # 0, § # 0 any value of z # 0
yields a unique net.
We now perform this elimination. Eliminate a,, by

by — Agp by = ddet Sy — Ayy(Ayy — 2455)
= 24,y Ay3— A3, (by a standard determinantal identity).
But expansion of these minors yields
Ay = 0ay5+Lbsayy, Ay = b3z, Ay = —bybg/(4bs) — zass
SO Obg— by by z+3by bgz + 2bg ags 2% + (815 + $b5a,4)% = 0. (*)

Multiply by 636z, and recall ay5a,, = — bg/2bs, a3, = z and 28ay; = by by— Lby bs— by z; then
we have, on collecting terms,

(—by2)%+ (by 2)° (b3bg— $b2b5) + (b32)® O (105 + $bg bs — b by) + (b 2) 0%(by by — $b5bs) +03(155) = .

Comparing this with the condition that A = wy touch 4,, namely (byw?+bsw+bg)? =
4bgw(by w3+ by w? + by w + by), we see that it is equivalent to saying that A + b, zv is tangent to 4,.

We turn to consideration of special cases. Provided ;3 and 6 are non-zero, trouble can only
arise if z = 0; and for this to be a root, b5 = 0. Here if b, # 0, 0is a simple root; now equation (*)
determines a3, = — by/0 and the others are determined as before. However, if by = by = 0, choosing
z = Oimplies a;, = a;, = 0 and though we have a net, the pencil A = 0in it has a common vertex
X,. If there is a singular subpencil not through M, we takeitas g = 0; thus b, = b, = b, = by = 0;
now ¢ # 0implies b, # 0 and hence ag4 # 0. Thus S, cannot have the same vertex (X,) as S,. The
pencil 1 = 0is thus of the kind above, so just one quadric in it is a plane-pair; and this must be a
double point of 4, hence also of 4, = u4,, so is one of the (two) points # = 4, = 0. Now the
‘tangents’ from M to 4y, i.e. lines meeting it in two coincident points, must be lines from M to
double points (there can be no ‘honest’ tangents). By lemma 1.2, the preferred tangent is the one
through the plane-pair.

We must also consider the case when 4, splits into three linear factors: A, # and a third
(bg A+bgpu+bsv): our hypothesis still yields b, # 0, b3 # 0. To avoid A being singular we need

z # 0; now z satisfies
(=b32)%+ (bgz) (— 3babs) +405(6 = — 103) = 0,
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which reduces to z = — b, b;/4b, (so we need by # 0 also: no three of the lines concur), and obtain
a unique net.

We can use the above formulae also to settle the case b3 # 0, & = 0. We use the same normal-
izations. Also, the line » = 0 cuts 4 in two coincident points other than M. Choosing this point as
L, we have b, = b, = 0. Hence a3, = a4, = 0 and our equations reduce to

_ _ — — a2 — —
33 =—bga13="0, a;; =0 and by=aly, bs=—20y30a3, a12a14=—Dbs/2b;
_ 2 2 _ 2 2
b; = — 33034 —2(a3,055) and by = 28,584 Gy G35 — 03405 G35 — 035).

If b, # 0, we can solve in turn b, for a,, # 0, bgfor a,,, by for ay,, b, for as; and b, for a,,; thus there
is a unique net. Butifb, = 0 we deduce a,, = 0 and hence bg = b, = 0: there is usually no net, and
even when there is, S, — b5/2b5 S, has the same vertex (X;) as Sy, so the net is unstable.

Next, if 4, factorizes we may suppose (as before) that A or xis a factor. But if ¢ is a factor, then
by = 0. If A is a factor, bg = by = 0. Since a4 # 0, a;5 = 0. The line X, X; meets S, twice at X;,
which is not a vertex of y; hence there is no vertex on thisline. Thus this subpencil does not have
a common vertex.

1.5.3. Next, suppose b3 = 0 but ¢ # 0. Here 4, # 0 and we can choose the point L so that
by = 0. As by # 0, agy # 0. We cannot normalize the x coordinates by a,3 = 0, but may suppose
instead that ;4 = 0.

Our system of equations now reduces to

Ags = gy = Ay = 0, by = 2a3,(# 0),
_ _ — 2
by = 2854034, by = 2011039+ 2a53a, bg = al,
by = Ay — 2455 = 2053 G54 A4 — Ggp a3y — 2{ — Gy G54 C3y},

17 — — 2
$bg = Aoy = 3183 039 + 33 Ay — 015034 13,

by = detSy = —a8y(ay; Gys — 612) + 2004 @54(yy Gog — 815 013) + 33035,
whence 834 = $bay ag = 04/ by, a1y + a5 = b5 /by, a15 = \/bg
and by = b5 as,— @y a3y, 50 that ayy = 4/b3 (bsby— by b;)
by— a3y by = — a34(ay; @y — afy) —afs a3y, so that
Gyy Gog— a3y = 4b54by by bg— b3 bg— b2 by};
finally a3 — %411 + -Z—-: - ?%%ﬂs +4/bga;s = 0 (from bg-equation).

If bg # 0, we can express a,, in terms of a;; from this last equation; substituting in the previous
one then gives an equation for a,;, each solution of which corresponds to a net (note that the
choice of'sign of 4/bg corresponds again to that of x;). Namely, we have

4bga by bgby—2bybg\2  4{by by bg— b3 bg— b2 b,
Zgn(b5b4—b2b7)_ a%l__b_;au_l_ 8 2b% 4 6} — {2 478 bg 6 2 .)}
which reduces to (byady—bgayy +bg)? = 4bg(by a3y — byayy +by),

expressing the condition that A +a;;, v = 0 touches 4,. If b; = 0, this equation still holds; a;, must
now be determined from the equation for a,; @y, — a?,, the ambiguity of sign corresponding (as
usual) to the choice of sign of x;.
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We must consider special cases. If M is a simple point of 4, then b # 0, so if 4, contains a line
through M it must be » = 0. But we have supposed b, # 0. For a line not through M, this must
meet v = 0 at L, and we may take it as 4 = 0. Thisis the case by = b; = by = 0. Then a,, = a,, =
Q14 = Gyq = 0, 50 Sy — ay; S, has vertex X, in common with §;, and the case must be excluded.

If M is a double point of 4,, then bg = 0. The tangent A +ay, v is now a tangent at the double
point M. This is a component of 4, if and only if we also have b, a2, — b;a,; +by = 0, or equiva-
lently, ay1(bs 04— byb;) = bybg— by by. This coincides with the condition that a;, = 0 hence (as
above) the pencil has a common vertex (certainly S, — a; S, cannot have a vertex on X, X; other
than at X,). This always happens if 4, is a product of three lines.

It remains to consider the case b3 = § = 0, i.e. by = by = 0. Here we may suppose b, # 0,
otherwise a43 = a3y = a4, = 0 and the line x; = x, = 0 is common to all quadrics: the case is not
semistable. Arguing as before, we find that if b5 % 0 we can solve for a3, a4, @53 and a,,, and then
have two equations which yield the values of a,, @y — @,5 4,5 and a,5 ay3 — @95 a,5. Now as a;5 # 0 we
can normalize @;; = 0 and then determine a,,, a5,. We thus have a unique net. Observe that as
bg # 0, M is a simple point of 4,; moreover v = 0is an inflexional tangent. Thus 4, is irreducible.

If, however, bg = 0 (so that M is a double point of 4,) bg = a%; implies a,3 = 0 and now b, =
— 284314, by = 28,5(@13 94 — @44 G53) IMply by = by = 0. Thus 4, consists of three lines through M.
For suitable A, S, + AS; is independent of x5, so we have a subpencil with vertex X;. There are
thus no new nets in this case.

We now summarize the classification in this section.

TueoreM 1.7. If we fix the singular subpencil v = 0 with plane-pair at M, and A = vAy; then:

Case by # 0, & # 0: if v meets A, in three distinct points, there is one net corresponding to each tangent
Jrom M to A, which is not a component of A,.

Case by = 0, 8 # 0: if v meets A, twice at M and in one further point, and M is a simple point of A, the
same holds for A, irreducible; for A, reducible we obtain no net.

If MLis a double point, there is one net for each tangent at M, which is not a component of A,.

Case by # 0, & = 0: if v meets Ay once at M, but is tangent elsewhere, there is just one net unless v goes
through a double point of A, when there is none.

Case by = & = 0:if v meets A, three times at M, there is one net for M a simple point; none for M a double

nt.
pon 1.6. Unstable nets

By theorem 0.1, for an unstable net we may choose coordinates x; such that a;; = b;; = ¢;; = 0
for1 <i<s,1<j<4—swhereeithers = 1 (typeI) ors = 2 (type II). We begin by considering
type II: nets of quadrics with a common line 3 = %, = 0.

1.6.1. Consider the submatrix B formed from the first two rows and the last two columns.
Changes of coordinates x,: x, and x4: x4 have the effect of elementary row and column operations
on B (changing %, and ¥, modulo x; and x, does not affect B). We may interpret the entries of B
as lying in C4, with preferred quadric det B = 0: we are allowed coordinate changes which fix this
quadric and preserve the two systems of generators. As the entries are linear functions of
(A, je,v) €C8, we have a map ¢: C?—C#, whose image may not lie in the quadric (else the netis not
semistable). The image is thus (projectively) a plane (general or tangent), a line (chord or
tangent) or a point not on the quadric. Thus we may change coordinates to reduce B to one of

v A1 JO A] [0 A7 [0 Al JOo A
the forms [,u v]’ [ﬂ V]’[M O]’[/\ /L]’ [)l O].Inallbuttheﬁrst,a13=b13=cl3=Osothe

net also belongs to type I; there is thus only the first to consider.
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A a repeated conic. We add suitable multiples of x5, x, to x;, %, to normalize coordinates by
g4 = g4 = b33 = by = 0, and so obtain

0 0 v A

0 0 Y/ v
Vot Ggg AtV C3aV

A v CaqV bygpp+cgqv

On the singular conic (A, 4, v) = (62, ¢2% 6¢) we observe that the rank of this equals that of

0 & 0
¢ g0+ 0¢ ¢34 00
0 ¢34 00 €10 0P + b4y 2

— 33 0 — 033 03 + 2034 O2P% — 40P — byy P*.

which has determinant

Unless all the coefficients vanish, this has four roots, determining four points on the conic
(which may coincide in various ways). The indication of these points determines a unique net. If
all vanish, all points of the conic correspond to plane-pairs. This too gives a unique net. Here
there is another common line x; = x, = 0, skew to the first.

1.6.2. We now consider nets of type I. Here we may take a,4 A + b4 £ +¢14 v as the coordinate
v: it may not vanish, else the net is not semistable. Then 4 equals ¥ multiplied by the discriminant
of the ‘net’ N cut on the line x; = x, = 0. Observe that the original net, together with the flag
X, €x,, determines N and the preferred subpencil P given by v = 0. We shall return to consider
which nets have more than one such degenerate flag, and classify according to pairs (N, P) in the
first instance.

(1) P a general pencil Ax3 + px3.

There are two essentially distinct cases for N, with matrices

(i) [:} ;] or (ii) [g 2] ; correspondingly A is a conic with repeated chord or a triangle with
one side repeated.
(2) P adegenerate pencil Ax3+ 2ux, x;.

s

Again there are two cases (iii) [2 'l: J and (iv) [2 O]: we have a conic with repeated tan-

gent or a repeated line-pair.
(8) P reduces to a point-pair 2Ax, X.
Here we have (v) voA , (vi) Y /\] and (vii) 0 A : three concurrentlines (one repeated)
A v A0 A0
or (in two cases) a repeated line-pair.
(4) P reduces to a repeated point Ax3.
Since we are assuming the net semistable, we have just (viii) [g 2] and (ix) [:} g]
A consists of two lines (multiplicities 1, 3) or a fourfold line.

(5) P vanishes identically:

(x) [3 ;] A is a fourfold line.

The first three cases are those where 4 has no quadruple point. These admit investigation along
the same lines as stable cases.
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Cases 1(¢), 1(22): 4 a conic or line-pair with repeated chord. These cases are so similar we may
treat them together. We have

0 0 0 v

0 A e Gog A+ bog o+ oy v
0 €v Y7 Agg A+ bggpb+Cgqv)’
Vo Gy AtbogftCoaV Gy A+bgftcs ¥ GuaAtbygfot oy v

where ¢ = 1 for type Ia and € = 0 for type Ic. We normalize coordinates by choosing x; =
Xy +ux,, X5 = x3+vx, to make ay, = by, = 0, and x] = x; + Xy + fx3 + Y%, to make cyy = €3y =
¢4a = 0. Then for plane-pairs on v = 0 we have

0 = — a3y A3+ agy A2u + byg Ap? — b3, 3.

In general we have three points (with multiplicites), the datum of which determines the remain-
ing coefficients (up to signs and common multiples, easily adjusted by trivial coordinate changes).
Again there is also the possibility that the remaining coefficients all vanish, and v = 0 yields a
pencil of plane-pairs with axis x, = x3 = 0: this net also is uniquely determined.

Case 2(ui) A a conic with repeated tangent. We normalize coordinates by by, = bgy = €94 =
€34 = €44 = 0, as above, thus obtaining

0 0 0 v

0 A 2 Ggq A

0 u v age A
VoA G A G Aty p

Then plane-pairs on v = 0 are given by
— a3 A+ 2009 gy APt — Qg APt — byg i® = 0.

In general we have three preferred points which (as before) determine the net. However, if 4 = 0
(the point of contact of the tangent) corresponds to a plane-pair, it then has multiplicity at least
two, and the datum of the third point fails to yield information about the coefficient a,,. We shall
see later how to account for this. Note that if ;4 = a3,, the rank of S; drops to 1. If all points of
v = 0 correspond to plane-pairs, we have two cases ay, = 0, @54 # 0: that the value of a,, here does
not matter is seen by multiplying #, and x, by appropriate factors.

The cases remaining are those in which 4 has a quadruple point. It seems that 4, even with
indications of which points correspond to plane-pairs (and the finer information of this kind to be
discussed in the next section) is inadequate in these cases to determine the SZ,(C)-orbit of the net.
We will confine ourselves to a listing of nets up to equivalence under GL,(C) x GLy(C). Here we
use a different approach.

1.6.3. Since a4 A +byy pt + ¢4V = v, we may normalize via x; = x; + Xy + fxy + vx, to make
Coy = €34 = Cq9 = 0. All coeflicients now appearing either contribute to the net N cut on

x1=x4=0

or to the pencil /7 with v = 0, in which «, does not appear, so we may consider it a pencil of conics
in x, = 0. Moreover, a pair (N, IT) appears if and only if N and 7 induce the same pencil P on
x, = x4 = 0. We have already classified pairs (N, P) up to isomorphism; we are about to classify
pairs (11, P). To infer a complete listing of triples, and hence of semistable nets, we need to know
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that an automorphism of P extends to one of N. Case by case checking shows that this is so, subject
to qualification that in certain cases N induces some further geometry on the line x; = x, = 0, as
follows:

Case (v): two points harmonically separating the point-pair x, x;.

Case (vi): choice of one factor of x, xs.

Case (viii): one point (x3) other than x,.

Case (x): a point-pair (x,%;).

Now we must consider /7. This is a pencil of plane conics, so is determined by a Segre symbol
we have eight cases, five non-singular and three singular. The pencil Pis cut on a line in the plane;
we have case 1 for a general line, 2 for a line through a base point of II, 3 for a line through
two base points, 4 for a common tangent at a base point and 5 for a base line of the pencil. The
ways these arise are illustrated in the following table.

type of pencil (1,1,1] (2,1] (31 (0,11 [(2,0)] [515] [1,1551] [2;51]
base point or
description abcd aabc aaab aabb aaaa XZ, Yz %%, y? x2, xy
lines of type 1 ef ef ef ef ef — z —
2 ae ae, be ae, be ae ae x+z — z
3 ab ab, be ab ab — x — —
4 — aa aa aa aa —_ X, x+y Y
5 —_ — — — —_ z — z

In four places in the table there are two non-isomorphic cases, as indicated. Also, from the
geometry on the line there are further bifurcations of cases as follows:

Case 3 (v): [1, 1, 1] has a special case when one member of the point-pair is the intersection of
ab with cd.

Case 3 (vi): the six cases listed split into nine.

Case 4 (viil): types [2, 1] and [(1, 1), 1] have special cases when the chosen point lies on b¢ resp.
bb.

Case 5 (x): the final type splits up according as the vertex of the pencil does or does not belong to
the point-pair.

Note that if I7is not a genuine pencil, S, and S, are dependent so we do not have a genuine net.

Note also, for comparison of our two approaches, that the discriminant of /7 is precisely the
equation for plane-pairs in the singular pencil v = 0.

We must now consider the possibility that the flag X, e#, is not determined uniquely by the
net. Suppose there are two such flags. If both have the same vertex, or both the same plane, then
the net is not semistable (it has a common vertex resp. a degenerate flag defined by a line in the
plane). If neither point lies in the other plane, we may take the flags as X, € x4, X, € x;. Here the
net is determined by N, which must be of type 1 or 2 (otherwise we only have a pencil); P appears
as z in the above table. If just one point lies in the other plane, we may take the flags as X, € x,,
X, € x,;. In this case, X, is a common vertex for the net, which cannot then be semistable.

Finally, if each point lies in the other plane we may take the flags as X, € x,, X, € x; and have

T oo O
oD o o
v v O
v VO R

18 Vol. 28g. A.


http://rsta.royalsocietypublishing.org/

"'\
A\
JA \
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A\

y \

Py

THE ROYAL A

N

—%

A A

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

254 C. T. C. WALL

If pis a multiple of », we may take p = v and then see that (N, P) is of type 4(ix) or 5(x) and IT of
type [11;;1] or [2;;1]: interchanging the flags shows that the final entries in the 4th and 5th lines
of our table yield equivalent nets. If pis not a multiple of v, we can take it as u. We then normalize
coordinates to put the remaining terms of the matrix in the form

[033 A+ gy a3 A ]
g A g A +byyp]

Cases may be tabulated as follows.

For (N, P) we have 2 (iv) if agg # 0, 3 (vi) if ag3 = 0, ¢33 % 0, 3 (vii) if a3y = ¢33 = 0.

For II, if agyas # aiy, [2, 1] if ay # 0, [3] if a4 =0, by # 0, [;1;] if @y = by = 0
if agga4y = a3y, [(1,1), 1] if agy # 0, [(2,1)] if @y = 0, byy # 0, [2551] if ayy = byy = 0.

If agy a4y # a3, (and similarly if equality holds) we thus have 9 cases which may be arranged as a
matrix; interchanging the two flags has the effect of transposing the matrix, so the number of
different cases is reduced by 6.

In this final case, the quadrics have a common line as well as two types of singular flag. In
general, we have a common line in cases (iv), (vi), (ix) and two intersecting common lines in
cases (vii), (x).

1.6.4. Non-semistable nets

Here, if we write u;; = a;; A+b;; p+c¢;;v, we may take u;; = 0for 1 <i<r,1<j<b5-r If
r = 1, the equations are independent of x; (the quadrics have a common vertex), so the classifi-
cation is the same as that for nets of conics.

Now suppose 7 = 2, If ), and u,, are linearly dependent, we may replace x;, x, by suitable
linear combinations to reduce #,, to zero, and are thus in the above case; so we may suppose them
independent. Now if 44 is dependent on u,4, #,4, but is non-zero, we may adjust x;: x, again and
SUPPOSE Uy, = Ugg = A, Uyy = 4. Now if ¢y, # 0, we normalize x5 = x, + ax, to make ¢,y = 0. Then
altering », and x, mod x3 and x,, we may suppose ag, = by, = a4y = byy = 0. We thus have two

cases:
A(2%; X4+ X3) + 1(2%5 %4) + V(2x5 %4 OF 23).

If ugy = 0 we argue similarly; here ¢g, # 0 else the net would have a common vertex X,. We thus

have
25,4( A%y + pxs -+ vixg).

Finally, if uy, is independent of u, 4, 4,4 we may takeitas v (and uy, = A, uy, = p). Again choose « to
make ¢y, = 0 and normalize ay, = b3y = a4y = byy = 0. We obtain two final cases

A2y x4+ u2xy %4 + V(X3 Or X2+ x3).

As already stated, we regard the unstable nets as of less interest. We shall not attempt a sum-
mary of the conclusions of this section.

2. BASE POINTS OF THE ADJUGATE SYSTEM
2.1. General remarks

The enumeration in § 1 has the appearance of being somewhat haphazard. In this part we pave
the way for the more theoretical considerations at the end of the paper by going over the listing
more systematically and making the numerical results explicit.
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Given a net AS, + S, + vS,, where S; = 474, %, A; asymmetricn x nmatrix and ™ = (xy,...,%,),
the dual equation of the general quadric of the system is given by

XTadj (Ady+pd,+vA4,) X = 0,

where adj denotes the adjugate matrix (we recall the identity 4 adj 4 = (detA) I; the entries in
adj 4 are the (z—1) x (n—1) minors of those in 4, up to sign), and X7 is the row matrix
(X35 +eey X,,). Instead of regarding this as an equation for X, we take X as parameter and regard it
as an equation for (A: u: v). We thus have (in general) an co®~! system of curves of degree (n—1):
this we call the adjugate system for the net. The advantage is that this is independent of the choice
of coordinates .

The adjugate net was introduced (for z = 4) in the classical paper of Hesse (1855a), for essen-
tially the present purpose. It was shown by Dixon (1902) that a general net can be recovered (up
to choice of coordinates) from the adjugate system. Dixon’s technique is exploited by Edge
(1938) andonp. 161 of Edge (1947). Theessential point tonotehereis that adjadj 4 = (detA)"—24.

Our proof of the following characteristic property of the adjugate system is essentially that of
Hesse (18554, p. 294).

Lemma 2.1. Any curve I” of the adjugate system intersects A in a set of points each with even multiplicity.

Proof. We may take coordinates so that I" corresponds to X = (0,...,0,1) and so is given
by the vanishing of the principal minor of Ady+ ud, +vA4, = 4, say. Recall the determinantal
identity:

(cofactor of @ a,, — a3,) det A = (cofactor a,,) (cofactor a,,) — (cofactor a,,)2

For a general net, the adjugate curves corresponding to cofactor @y, (i.e. to x;) and to x, will
intersect 4 in disjoint sets of points; the equation shows that the union of these sets is a set of points
of even multiplicity, whence the assertion in this case. But now the multiplicities must remain
even under specialization.

Remark. It may be objected that the equation of I" could reduce to 0 = 0. We have observed
that for a semistable net, this will not be the case for a general I'. In fact, there exist I"of this type
if and only if the net is unstable. For I"corresponding to #,, = 0so collapses if and only if the trace
of the net on x,, = 0 is singular. By the characterization theorem in §1 (with »— 1 in place of n),
we can find 7, 1 < 7 < }n and coordinates ¥, so that af, = 0 wheneverj < r, £ < n—r. But then by
the other part of the theorem, the net fails to be stable. The converse follows by reversing the
argument.

Although for a general net the adjugate system has no base points, in special cases it may well
have. We adopt these as a systematic principle in listing the conclusions of § 1. To facilitate the
determination of these base-points, we begin with some further lemmas.

LemMA 2.2. N s a base point of the adjugate system if and only if rank Sy < n— 2.

Proof. We seek the condition that X7 adj (Ady +ud, +vA,) X = Oforall X at (A, 4, v) = (0,0,1);
i.e. that adj 4, vanish identically. This is equivalent to rank 4, < n— 2.

While this result is already sufficient to deal with ordinary singularities of 4, we find that when
higher singularities occur, it is possible to have ‘implicit’ (or ‘infinitely near’) base points. We
shall deal with most of these ad koc, but it will save time to insert a further general result here.

18-2
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256 C. T. C. WALL

Lemma 2.3. (1) Ifrank Sy = n—j— 1, each member of the adjugate system has a j-fold point at N.
(ii) If rank Sy = n— 2, then the members of the adjugate system all touch MN at N if and only if S,
contains the vertex of Sy (a projective line).

Proof. (i) We may take the matrix of S, in standard form: then in AS,-+ uS; +vS,, v only
appears in the first (n —j— 1) rows. It is thus clear that, for any X, the degree of XTadj (AS, +
Sy +vS,) Xin vis at most #— 1 —j, so each term has degree at least j in A and g, which yields
the stated result.

(ii) Continuing from the above, withj = 1, the terms of degree precisely 1in A and g, (n—2) in
v are

Vn*z((a}b,n /\ + a%&,’nlu') X12z—-1 - 2(a}t-—1, n /\ + a%b—l,n:u) Xn—l Xn + (a}L-—l, n—1 A + d%-1,n—1 /‘L) X?%)a
so A touches A = 0 at (0,0, 1) when

2 2 2
an, n X’n—l - 2an—1,n Xn—l

Xn + agwl,n—l szo, = 0.

This happens for all X if and only if @} , = ab_; , = ab_; ,_; = 0, which expresses the stated
condition.
In case (ii), we may go rather further.

LeEmMA 2.4. If the adjugate system has coincident base points at N, in the direction MIN, then the coefficient
of v*=3u3 in A vanishes. Thus either N has multiplicity greater than 2 on A or it is a double point of type A,
withk > 3.

Proof. In view of the form of S,, the desired coefficient is

2 2 2
n—2 @i, Tin-1 Gin
2 2 9 - 4 2 — 2 — 2 —
.Z detla?, , @) i, @ 1, =0 since ag_y, =05 4,=2a,=0.
=1 5 2 2
ai,n an—l,n an,n

Clearly it would be easy to obtain further results along these lines, but the complete pattern
remains obscure.
2.2. Multiplicities: a working hypothesis

The other feature of our approach is a systematic calculation of multiplicities. This serves as a
valuable check on the enumerations of § 1. Recall that if 4 has no repeated component, there is a
finite number of corresponding nets, and if multiplicities are counted correctly, this number must
stay constant. It is not hard to see thatitis 3 for » = 3 and 36 for n = 4, as was shown already by
Hesse (18550, p. 318). For a fuller discussion see the final section.

We begin by going over the case n = 3. For 4 irreducible, we normalized

A = — pPv + A3+ pAv: 4 gv3,

and found one net for each root of A% + pA + ¢ = 0. Thus for 4 non-singular there are three corres-
ponding nets (called of type A), and the adjugate systems cannot have base points. If 4 is nodal,
we may choose the repeated root (type B, multiplicity 2) or the other (type B*, multiplicity 1)
The conic corresponding to the node N is a repeated line for type B, a line-pair for type B*: thus
N is a base point of the adjugate system for type B, but not for type B*. Finally, if 4 is cuspidal we
have a single net (type C, multiplicity 3), and the cusp is necessarily a base point of the adjugate
system.
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The key observation to be drawn from the listings of § 1 —though we shall study much finer
points also —is that the listing of cases depended only on the number and type of singular points of
4 or, more precisely, on the equi-singularity class of 4. For example, dual singularities (and such
questions as whether an inflexion occurs at a node) are not relevant. Now as we vary 4 in such a
class the number of nets remains constant, so their multiplicities must remain constant too.

It follows from (2.1) to (2.4) that the families used in §1 for the classification correspond to the
possibilities of base points for the adjugate system. Observing that the multiplicity exceeds 1
precisely when the adjugate system has a base point, we seek a connection in other cases.

Working hypothesis. If A is irreducible, the multiplicity of any net with discriminant 4 is deter-
mined by the base points of the adjugate system; more precisely, by their equi-singularity class.
Moreover, for separated singularities, we simply multiply the corresponding multiplicities.

From the above, a double point with distinct tangents (node) corresponds to multiplicity 2, a
cusp to multiplicity 3. We now begin our detailed enumeration for the case n = 4.

2.3. A irreducible with double points only

First suppose 4 has ordinary singularities only. Then 4 may only have nodes (A,) or cusps
(A,), and as 4 isirreducible it may have at most 3 such. When there are 3, the results of our calcu-
lations are listed in theorem 1.3. Since there are no implicit base-points by lemma 2.4 and
explicit ones occur (lemma 2.2) precisely for plane-pairs in the net, all base points are determined.
We obtain table 1, where the entry 7 x m denotes 7 nets, each of multiplicity .

TaBLE 1
base points ... — L M N LM L,N M,N L,M,N
singularities
A (L, M, N) 4x1 2x2 2x2 2% 2 1x4 1x4 1x4 1x8
A,(L) A, (M, N) 2x1 2x3 1x2 1x2 1x6 1x6 0x4 1x12
A, (L, M) A (N) 1x1 1x3 1x3 1x2 1x9 0x6 0x6 1x18
Ay (L, M, N) 0Ox1 1x3 1x3 1x3 0x9 0x9 0x9 1x27

The total multiplicity adds up (as it should) to 36 in each case.

More significantly, for each node A (resp. cusp B) the total multiplicity of nets with adjugate
base point at A (resp. B) is 20 (resp. 30). As it seems unreasonable that, in a deformation, this
could change unless the nature of A (resp. B) itself changes during a deformation, we adopt this
‘principle of permanence’ as a second working hypothesis for determining multiplicities.

As a first consequence, we can determine what happens in the remaining cases: see table 2.

TABLE 2
Nonsingular: 36 x 1
one node: 16 x 1 (no base point) + 10 x 2 (one)
one cusp: 6 x 1 (no base point) + 10 x 3 (one)

and for two,

— L M LM
A (L, M) 8x1 4x2 4%x2 3x4
Ay(L) A; (M) 4x1 4x3 1x2 3x6
Ay (L, M) 3x1 1x3 1x3 3x9

The appearance of 10 nets above confirms the observations made after lemma 1.1.
Now we consider the case when 4 has a higher double point. Recall that we considered three
cases here, according to the type of the pencil tangent at the double point N. From lemmas 2.2
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and 2.4, N is not a base point for type [4]; it is a simple base point for type [(3,1)], and is a base
point of multiplicity at least 2 for pencils of type [(2,2)]. Next we must fix the multiplicities for
this case. We have

ayp Aty p v bigtt  biapt
A= v Ao A+bogft bogt oyt ,
bigpe bas 1t 0 A
biape boatt A 0

A =detd = {Av— (bygbog+bygbog) 17} — {013 A + by At — 2b15 by 117} {199 A + by At — 2095 by 1%}
Now XTadj AX has tangent A = 0 at N; for the second-order behaviour we need the coefficients
of Av? and of p2v which are respectively 2X; X, and 2(b,,005 X3— (014005 + b13054) X3 X, +
b15 053 X3). The ratio of these is constant if and only if b,, by = b,3 43 = 0: if this fails, there are
no further implicit adjugate base points. If it holds, the second neighbourhood points on
XT adj AX, on the conic Av = (b;4 gy + by3 by,) 12 and on 4 coincide.

As 4 is irreducible, and so not divisible by A, the coefficient (d,3 b5y — b14055)? of #* does not
vanish. For the higher base point 4,405, = 0: we may suppose by symmetry b,, = 0. Then
by5bs4 # 0,50 we obtain the extra base pointifand onlyif 4,3 = 0. Thisis equivalent to saying that
each of the preferred pairs of factors of the quartic includes A: it implies A a repeated root (type
A; or Ag); and for A; we have two nets, one with this base point and one without; for Agjust one
net, with. I shall omit the proof that higher base points do not occur.

The results are presented in table 3. Denote the more complex double point by L, the simpler
(if there is one) by M.

TaBLE 3
base points ... — L L,L M LM L, LM
singularities
A, 2x1 4x4 3x6
A, 1x1 1x5 3x10

A+ A, 2x1 2x4 1x6 0x2 1x8 1x12
A;+A, 2x1 1x4 0x6 0x3 1x12 1x18
A+A;  1x1 Ix5  1x10 0x2  0x10 1x20
A+ A,y 1x1 1x5 0x10 0x3 0x15 1x30

base points ... — L L, L. L,L,L
A, 1x1 0x6 1x15 1x20
Ag 1x1 0x7 0x21 1x35

The multiplicities for Aj;, A, are easily determined from the working hypotheses above: for
example, in the case of A, let adjugate base points L resp. L, L correspond to multiplicities
resp. ¢. Then for A,+ A, the only net with M a base point has multiplicity 20 by the principle of
permanence, and this equals 2¢.

There is not information yet to determine the multiplicities for A; and A4, though the final one
in the table must be 35. However, if we assemble the table of multiplicities so far obtained

— L LL LLL

A 12

A, 13

A, 1 4 6

A, 15 10

Ay 1?2 ? ?
Ay 1 ? 35
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the following is extremely plausible (and, for A;, consistent):

ConjeCcTURE 1. For r coincident base points at a singular point of A of type A, we have

() r <™ i) mutiplicity = (”“; 1),

2.4, A reducible with double points only

The multiplicites appropriate to the double points must be as above; but that some modifica-
tion is necessary can be seen by considering the case of nets of conics. If 4 is a conic with chord
there are two singular points, each of type A; and two nets, one with no adjugate base point and
multiplicity 1, and one with two adjugate base points, but multiplicity 2 rather than 4. Similarly
if 4 is a conic with tangent, the singular point has type A, and the unique net (type F *) has double
adjugate base point there, but the multiplicity is 3 rather than 6. In the remaining case when 4 is
a triangle, so we have 3 singular points each of type A,, there is one net with no adjugate base
points and multiplicity 1, and one with 3 adjugate base points, but multiplicity 2 rather than 8.

The following rule gives these values correctly, and gives consistent results for nets of quadrics
also.

ConNyECTURE 2. If A is reducible, but has only double points, and various (ordinary and implicit) adjugate
base points P, are prescribed, then blow up A at all the P,. If the result has k components, the multiplicity is
21k times that predicted by a naive intrepretation of conjecture 1.

Observe that conjecture 1 (i) states that simple points cannot be base points: this would corres-
pond to superfluous blowing-up. Observe also that—as is already evident in the above case of
nets of conics—simple numerical criteria restrict the choices of sets of base points.

Ifaline v is a component of 4, a curve of degree (n— 1) meets itin (z— 1) points. If these are to
coincide in pairs, other than those attributed to adjugate base points, where another component
of 4 also appears, then the number of adjugate base points on » must have the opposite parity to
n. Similarly if » = 4 and ¢ is a conic contained in 4, we must have an even number of base points
on 4.

Thus, for example, if 4 consists of two conics with four distinct intersections, either 0, 2 or 4 of
these correspond to plane-pairs (rather than cones): a conclusion obtained in theorem 1.3 as a
consequence of the enumeration.

We return to the enumeration. In the case of a pencil » with common vertex, we see directly
that adjugate base points are precisely those of the net of conics, together with the intersection
points v n 4,, counted with appropriate multiplicities. (As 4 has no triple points, v passes through
no double point of 4,.)

Now let 4 = vA,, where v does not correspond to a pencil with common vertex; and let M be
the point on v corresponding to a plane-pair. Then M is an adjugate base point: I claim that, even
if v touches 4, at M, the neighbouring point is not. For take X = (0, 0, 1, 0). The corresponding
member of the adjugate system is of the form v2f, (A, u, v) — (A + a1, V) (@ + @54 v)%, which never
contains the point in question.

As to other base points, we will refer to lemma 1.2. Since we have a singular subpencil

So = 41+ 2%, %5, Sy = 24,4,
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the condition for ASj + »S, to meet x, = 0 in a degenerate conic is

A+a,,v

0 = det

a13 14

14V

Ag3V g V| = OAVZ +13(ay, aggay, +etc.),

so the corresponding tangents are » = 0 (twice) and the one named as preferred. In the case
0 = 0 we have v = 0 as threefold root. (Note that S, does not meet x, = 0 in a degenerate conic,
so v = 0 does not belong to the other set.) The results can now be read off.

We start tabulation by adjugate base points in the case when 4 = v4, with 4, an irreducible
cubic. In table 4, the nature of 4, is indicated by the letter E, N or C according as 4, is elliptic,
nodal or cuspidal: in the latter two cases the double point is denoted by P. As we are excluding
triple points, the line » = 0 does not pass through P; the nature of its intersection with 4, is indi-
cated by the letter ¢ (chord through the points L, M, N), ¢ (tangent at L, cutting 4, in M) or f
(inflexional tangent at L). Recall that the number of base points on vis odd: 3 if the corresponding
pencil has a common vertex and 1 if not.

TABLE 4
base points ... L M N LMN LP MP NP LMNP
4, v singularities
E c 3A, 4x2 4%x2 4x2 3x4
N c 4A, 2x2 2x2 2x2 1x4 1x4 1x4 1x4 1x8
C c 3A A, 1x2 1x2 1x2 0x4 1x6 1x6 1x6 1x12
base points ... L M LLM LP MP LLMP
E t Ag+ Ay 4x4 1x2 3x6
N t Az +2A, 2x4 1x2 1x6 1x8 Ox4 1x12
G t A+ A+ A, 1x4 1x2 0x6 1x12 0x6 1x18
base points ... L LLL LP LLLP
E f A 1x6 3x 10
N f A+ A, 1x6 1x10 0x12 1x20
G f A+ A, 1x6 0x10 O0x18 1x30

Next we list the cases when 4 breaks up into two distinct non-singular conics. A point of multi-
plicity r asan intersection produces a singular point A,,_;. Since the total intersection multiplicity
is 4, cases are as listed in table 5.

singularities

4A,
Ag+2A,
2A,
As+A,

Aq

4x1
2x1

2x1

1x1

1x1

A,B
1x4
AA
1x6
AA
0x6
AA
1x18
AA
0x 28

TABLE 5
A C A, D B,C B,D G, D A,B,CD
1x4 1x4 1x4 1x4 1x4 1x8
A,B  A,C BG AABC
1x8 1x8 0x 4 1x12
A,B BB AABB
1x16 0x6 1x18
A,B AAAB
0x 12 1x20
AAAA
1x35

Strictly speaking, we have not verified the precise multiplicity of A as adjugate base point for the
two final higher cases: this is, however, straightforward.
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We complete the tabulation with double points by listing cases where 4 splits into conic plus
two lines, or four lines. We still have an odd number of base points on each line; an eéven number on
each conic. The cases are given in table 6.

TABLE 6

5A C A,B A,B” AB A,B AA,C B,B,C AA,BB,C
1 2x2 1x4 1x4 1x4 1x4 1x4 1x4 1x8
At 3, C AB  AB BB,C AAC AA,BBC

1x2 1x8 1x8 Ox4 1x6 1x12

C A,B A,A,C B,B,C A;A BB C
1x2 1x16 0x6 0x6 1x18

(Arg, Agg) Or (Aggy Agy) o1 (Agy, Agy) 1x 4
(Agzs Aggy Agy) or (Agp, Agg, Agy) 0r (Agg, Ay, Agy) O (Aggy Agyy Agy) 1x4
and, with basepoints Ay, Ayg, Agyy Agg, Agy, Agg: 1% 8.

Again the enumeration comes at once from our results on nets with a singular pencil. The results
as a whole form a very thorough check both on those enumerations and on our conjectures con-
cerning multiplicity. For the case when 4 has only double points, I feel certain that these are
correct. :

2.5. A with a triple point

New considerations enter with triple points, and the evidence for any conjectures is much
thinner. First, consider a triple point N of type D, (i.e. with distinct tangents). We cannot simply
impose N as an adjugate base point, since this corresponds to intersection multiplicity 3 (which is
odd). One might think of a parity rule, but what we find in the examples below is that either (a)
we impose with N a satellite base point in one of the tangent directions, or () we impose N as a
double point on members of the adjugate system. Thus the most naive extension of conjecture
1(i): that we can only impose satellite base points at non-simple points: is false. For the higher
triple points, it is even less clear what to do, so our summary is of necessity more tentative. We may
observe in general that if S, has rank # — 5, not only is N an s-fold point of 4, butitis an (s — 1)-fold
point of the adjugate system (which thus consists of sub-adjoints to 4).

There are four types of 4 with D,-singularity:

Irreducible. N a plane-pair: one net for each tangent direction. N a repeated plane: one net.

Nodal cubic plus nodal chord. If the pencil has common vertex, two nets (one for net of conics
type B, one for type B*); otherwise two nets, corresponding to nodal tangents.

Conic plus two chords meeting on it. Here either or both may have common vertex; or neither,
with one net in each case.

19 Vol. 289. A.
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Four lines, of which three concur. Either just one of the concurrent lines corresponds to a pencil
with common vertex, or all four lines do.

For each of these cases we have four nets, of which one each may be associated to the three
tangents at N while N2 is imposed for the fourth. Our multiplicity rules suggest the same results in
each case; the principle of permanence now yields:

D, point plus one tangent direction: multiplicity 8,
D, point as double point: multiplicity 12.

For a D; singularity, 4 may be irreducible or a cuspidal cubic plus a chord through the cusp.
In each case we obtain two nets: one corresponding to choice of the repeated tangent direction
and one to imposing it as a double point. In the reducible case, only the latter has base point at
the node. We conclude the corresponding multiplicities are 16 and 20.

For a Dy singularity, 4 may be a nodal cubic plus nodal tangent or a conic plus chord plus
tangent at one end of the chord. Just as for D;, we get two nets each time, and make the same con-
clusion concerning multiplicities. If conjecture 2 applied in the presence of triple points (and we
have no real evidence to support this) we should double these numbers to obtain the contribution
of Dy itself.

For Eg we must have 4 irreducible. There is just one net (hence multiplicity 36); N corresponds
to a repeated plane, so the adjugate system passes doubly through N. I have not checked for
further implicit base points.

Finally, E; occurs when 4 consists of a cuspidal cubic plus the tangent at the cusp. There is just
one net again, with N a repeated plane. Perhaps imposing E, as a double base point corresponds
to multiplicity 72. There are no further singularity types for plane quartics without repeated

components, except E,: a quadruple point with distinct tangents, which appears when 4 con-
sists of 4 concurrent lines. There is a unique corresponding type of ‘net’: taking N as the quad-
ruple point, S, must vanish identically, so the net really reduces to a pencil (of type [1, 1, 1, 1]).
This is too degenerate to justify further elaboration (though a direct proof of uniqueness here
was the basis of my first proof that multiplicity stays finite for 4 with no repeated component, the
corresponding result breaks down for # > 5, so the argument now presented is superior).

We conclude this section by clearing up the final case of 1.6.2. Since a3, = 0, the adjugate
system is

XH{(A — p?) (844 A+ byg pr) — @34 APV} + 254 AV2X) Xy — 200 Apiv X, X
—2v(Av— p?) X; X, — v3 X3+ 2uv2 X, Xy — Av2X3E.
The coefficient of A% is (a,,— a3,) vX3, s0 we have coincident base points at L. along v = 0. For
second-order base points we look at the coefficient of Au?: —ay, X3. There is thus a third base

point, along the conic (ay, — a%,) Av— a, #* = 0; and this determines the ratio a,,: a3,. If a5y # 0,
there are no further base points.

3. JACOBIAN CURVES
3.1. The case when A is non-singular

I now recall the classical enumeration (Dixon 1902) of nets with 4 non-singular. I am grateful
to Michael Atiyah for a conversation drawing my attention to this reference, which had a decisive
impact on my approach to this problem. We return to the case of nets in C?, with n arbitrary.
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The system of plane (n— 1)ic curves cuts 4 in sets of n(z— 1) points forming a linear system A
which contains the sum of the canonical system « with double the system # of linear sections. Each
net & gives an adjugate system, contained in the above, which cuts 4 in a set of {n(n— 1) points
(each of multiplicity 2) forming a system £(%) on 4 whose double is A. It is shown by Dixon
(1902) that this system £(%) determines Z. Conversely, suppose we are given a linear system £
with 2§ = A. We can interpret both A and £ as line bundles over 4: then the additive notation
becomes multiplicative, £ ® £ >~ A. Write I'(§) for the space of sections of £, and ¢(§) = dim I"(£)
mod 2. Then (see for example, Mumford 1971) €(£) is stable under deformations and it can be
shown that £ corresponds to a net if and only if ¢(§) = 0.

The set of ¢ with { ® { > « is called the set of theta-characteristics S(4) of A. It corresponds
bijectively by § = £ ® 7 to the above set of systems £. Each is a principal homogeneous space over
Jy(4), the group of line-bundles whose square is trivial: i.e. elements of order 2 in the Jacobian
(or Picard) variety J(4), which may be canonically identified with H(4; F,). As 4 is a general
curve of degree #, its genus is given by p = §(n—1) (n—2), and J,(4) can be considered an [F,-
vector space of dimension 2p.

Mumford goes on to prove the result (attributed to Riemann) that ¢ is a quadratic function
associated to the bilinear form of cup products on H'(4;F,)—i.e. that for £eS(4) and
@, fe HY(4;Fy),

e(§+a+p)+e(+a)+e(f+p)+e(f) = af (mod2).
According to the theory of quadratic forms over F,, this situation is described by an invariant due
to (Arf 1940), according to whose value the number of £ with €(£) = 0is 222~ + 2¢-1, Mumford
concludes by showing that the positive sign must be taken. Thus the total number of nets in C*
with given 4 is N = 2?»-1 4+ 27-1 for any non-singular 4, and hence for any 4 free of repeated
components. For n = 3, 4, 5 we have p = 1, 3, 6 hence N = 3, 36, 2080.

3.2. Generalized jacobians

It seems reasonable to expect some analogue of this theory to hold for singular 4, and the
remainder of this paper is devoted to formulating necessary properties of such an analogue.

At first sight there appear to be two alternative approaches: should we consider points of order
2 on the jacobian of the normalized curve, or should we use the generalized jacobians of (Rosen-
licht 1954) ? But it does not take much thought, on the basis of § 2, to see that we need both. More
precisely, we now formulate

ConjecTURE 3. For any (permissible) system B of adjugate base points on A, form a curve Ay by blowing
up A along B (i.e. the transform of A by the system of curves of sufficiently high degree with base points B).
Form the set S(A ) of square roots of the canonical bundle of A y: this is a principal homogeneous space over the
group Jo(Ag) of elements of order 2 in the Jacobian, which is canonically isomorphic to HY(Ag; Fy). Then
there is a quadratic form e: S(Ag) — F,, associated to the form defined by cup products on H(Ag; Fy). For
LeS(4g), the system of curves meeting A at B and (doubly) at the points of members of £ = {® is the
adjugate system of a net if and only if €(§) = 0. Each net with discriminant locus A arises in this way for some
Band L.

The question of which B are permissible was discussed to some extent in § 2. It seems clear that
B must be contained in the set of base points of the adjoint system of 4; when 4 is reducible, there
are also some parity conditions.
As we need the generalized jacobians, we pause to survey their basic properties, which are not
19-2
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easily to be found in the literature. For such as are not contained in Rosenlicht’s original paper, I
am indebted to Peter Newstead, who has also supplied proofs.

Any complete algebraic curve I" has a generalized jacobian J(I"), which is a commutative
algebraic group. J(I") is complete (hence, an abelian variety) if and only if I"is non-singular. In
general, if 4: I'—> I'is the normalization, there is an induced epimorphism A*: J(I") - J(I'). The
kernel of A* is a linear algebraic group, the quotient by whose nilradical is an algebraic torus.
More precisely, ker h* = II, K(I',P) is a product of algebraic groups corresponding to the
singular points P of I". Both globally and locally, this kernel can be expressed as a quotient of
unit groups in the associated rings O(I")%/O(I")%. For example, at a point where 7 branches meet
transversely, we have (CX)"/(CX) = (C*)™; whereas at a singular point P with only one branch
we have a unipotent group whose dimension is the number of positive integers not belonging to the
semigroup of P, i.e. half the Milnor number of P, #(P). On deforming I" (as a plane curve, for
example), the dimension of J(I") remains constant, but its structure may change.

If I'" has r(P) branches at P, the reductive quotient of K(I', P) has dimension (r(P)—1);
K(I', P) itself has dimension §(u(P) 4+ 7(P) — 1). These extensions all split if we merely consider the
groups as topological groups; thus K(I}P) x (C+)¥uP-r®H1 5 (CX)rP)=1 ~ RuP) x (§1)rP)-1,
Notice that the calculation of these dimensions yields the formula of Milnor (1968) for the genus
of a plane curve. The extension 1 ->ker h* — J(I") - J(I') - 1 also splits as a sequence of topologi-
cal groups, hence the sequence of elements of order 2, say

1 +HP Kz(r, P) 9‘-.]2(11) '%Jz(l—-‘) —> 1,
is also split exact.
By the above, K,(I', P) has rank 7(P) — 1 over F,. We can interpret it explicitly as follows. Since

K(I,P) = O(I, P)*/O(I, P)%,

we must take the functions ¢: 4=1(P) —{ + 1} which are the elements of order 2 in O(I, P), and
factor out the subgroup of constant functions on A~1(P). Thus elements of K,(I', P) can be inter-
preted as partitions of the set of branches of I" at P into two disjoint subsets (namely ¢—*{1} and
¢~ 1}). , , _

3.3. Review of quadratic functions over F,.

We are about to reconsider the lists in §2, this time seeking to understand why the numbers of
nets of each type are just so. Before doing so, however, it is necessary to recall the basic facts
concerning quadratic forms over [,.

Let E be an affine space over F, with underlying vector space V, ¢: £—F, a quadratic map,
associated to the symmetric bilinear map b: V' x V—[F,;i.e. for any x,y € Vand ze E we have

q(x+y+2z) +q(x+2) +9(y+2) +q(2) = b(xy).

We do not assume that & is non-singular.

Write R for the radical subspace {xe V:5(x, V) = 0}. Then for xeR, ¢(x) = q(x+2) +¢(2) is
independent of z€ E, and ¢: R — F,is a homomorphism. There are now two cases. If¢ is non-zero -
say ¢(x) = 1—then for each z€ E, ¢(x +z) and ¢(z) have distinct values. Hence ¢ takes the values
0 and 1 equally often. In this case we define @(g) = 0.

If, however, ¢ vanishes we have ¢(x + z) = ¢(z) forallxe R, ze E. Wewrite V' =V/R,E' = E/R
for the quotients by R: E’is an affine space with vector space V', Further, b defines a non-singular
form ": V' x V'—F, and ¢ a quadratic ¢': E' -, associated to 4’. Choose a symplectic basis
{5, f;:1 < i <k} for (V7, §") and a base point zge E'. Then x—¢"(x) = ¢'(x+2,) +¢'(z,) is a
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k
quadratic form on V"’ associated to 4'; its Arfinvariantis Y, ¢"(¢;) ¢"(f;) and if this is 0 (resp. 1)
i=1

then ¢” takes the value 0 (resp. 1) for 226—1 4 2k-1 elements of V.

Itis convenient to set @(q) = @(¢') = +1 (resp. — 1) if Arf (¢") +¢'(z,) = 0 (resp. 1). Then the
number of ze E’ with ¢’(z) = 01is 22%-14+ @(¢’) 2%-1, and if r = dim R the number of ze E with
q(z) = 0 is 2%+r=1 4 @(g) 2k+7-1, This is also true in the case P(¢g) = 0.

For a singular curve I' = 4 as above, we may identify J,(I") with (I, F,). Clearly Ky(I") is
the radical of the bilinear form defined by cup product, so the corresponding V"' is H'(I', F,) and
the parameter £ is the genus p of I" (or of 4). The parameter r = 2{r(P) — 1: P a singular point of
I'} is easily written down in each case. Thus a first check on the above conjecture is that, in each
case, the number of nets obtained equals one of the integers 227 +7—1 + @2P+-1with @ = 1,00r — 1.
We now go through the cases, and determine the values of @.

3.4. Tables and conjectures for A irreducible

We now verify that for the cases considered in (2.3) the number of nets equals one of the values
above. In table 7 below we recapitulate the data from tables 1-3, and indicate in each case the
genus p, and tabulate (r, @) where r denotes the number of nodes with branches not separated by
blowing up and @ is determined so that the number of nets equals 27+7-1(2? 4+ @),

TABLE 7
singularities p Dbase points
none 3 none (0, +1)
L - L L,L L,L,L
A, 2 (1,0 (0, +1)
A, 2 (0,—-1) (0, +1)
Aq 1 (L,-1)  (1,0) (0, +1)
A, 1 (0, —1) (0, —1) 0, +1)
As 0 (1,0 (t-1) (1,0 (0, +1)
A, 0 0, +1) (0, —1) (0, —1) 0, +1)
L+M — L L,L M LM L,L,M
A+ Ay 1 (2,0) (1,0)
Ap+ 4y 1 (1,0) (1,0)
A, + A, 1 (0, +1) (0, —1)
A3+A1 0 (29 O) (29 0) (1;0) (1a - 1) (laO) (05 +1)
A3+A2 0 (1’ +1) (150) (0’ - l) (1a - 1) (1,0) (09 + 1)
A4+A1 0 (190) (1’0) (1a0) (09 _1) (O’ - 1) (O’ + 1)
A4+A2 0 (Oa + 1) (09 +1) (O» - 1) (Oa - 1) (03 "'1) (Os + 1)
L+M+N — L M N LM L,N M,N L,M,N
A+A+HA 0 (3,0) (2,0) (2,0) (2,0 (1,0) (1,0) (1,0 0, +1)
A+ Ar+A, 0 (2,0) (2,0) (1,0) (1,0) (1,0) (1,0 (0, —1) (0, +1)
A +A+A, 0 (1,0) (1,0) (1,0) 0,+1)  (1,0) 0,-1)  (0,—1) (0, +1)
Ap+ A+ A 0 (0,—-1) (0,+1)  (0,+1)  (0,+1)  (0,—1) 0, -1)  (0,—-1) (0, +1)

We observe that when ordinary singularities (A; and A,) alone are present, we have @ = 0 if
and only if I' = 45 has a node; otherwise @ = (— 1)*, where & is the number of cusps on I". More
generally, the value of @ in all cases is consistent with the following.

CoNjECTURE 4. (interim) The value of D depends only on the singularities of the curve I' = Ap. More-
over, to each type of singularity, we can assign a number @¥ = —1, 0 or +1 and then O(I") = II{PF: P

singular on I'}.
19-2
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In particular, for type Ay, Ay, Ag, Ay, Ay and Ag we have
®=0,-1,—-1,-1,0 and +1.

Familiarity with patterns of Arfinvariants andClifford algebras now suggests that @ = 0for A, 5,
whereas for Ay, (r = 2, 3,4) we have @ = (— 1)k+1,

Before proceeding to reducible curves and curves with triple points, we seek to interpret this
conjecture in a more intrinsic way. Recall that @ = 0 if and only if ¢ is non-zero on the radical
Ky(I") = II; Ky (I, P). The simplest way to achieve the above multiplicative property is then if
¢|Ky(I', P) can be given an intrinsic local description.

Now the double points with two branches are the A, ,, and we suggested above that @ = 0,
or equivalently ¢ # 0 for these precisely when £ is even. This is equivalent to the intersection of the
two branches being odd. This suggests the following, much more explicit conjecture:

CoNJECTURE 4 (i). For P a singular point of I" with several branches, and ¢ € Ky(I', P) corresponding to
the partition of these branches into two sets, with unions f and f', ¢(p) equals the local intersection number

BB (mod 2).

Let us verify that thisis indeed a homomorphism K, (I, P) - Fy. If ¢ = ¢, + @, in Ko (I, P), we
can partition the branches at P into four sets (some of which may be empty) with unions 5, £, £,

and f so that ¢; = (ByU By, B2 U B3), P2 = (BoU s f1U Bs) and hence ¢y = (B, U B3, f1 U fo)

Then
c(¢1) +¢(B) = (Bo+ Br) (Bat Bs) + (Bo+ B2) (Br+Bs)
= Bofat BoBs+ i Pat BrLBs+ BoBrt Bo B+ FrBat Bafs
= oy + Lo Bot B1Bs+ Be Py
= (fo+Bs) (Br+Ba) = ¢($5) (mod 2).

We turn to the assertion of the conjecture concerning non-zero values of ®@. Again, it is natural
to expect much more to be true. We propose:

CoONJECTURE 4 (ii). If ¢ vanishes on Ky(I"), the non-singular form associated to q is the Riemann _form on
Jo(I). The constant value of g on Ky(I") is the sum of terms Dy, depending only on the types of singular points P

of T

The above conjectures, along with ®(A,,,) = (— 1)+ for r = 2, 3, 4, may be considered as
the main conclusions of this paper. For completeness, we finally discuss the modifications neces-
sary for reducible curves.

3.5. The case of reducible curves

Here we must be careful of the possibilities that I" is disconnected; and certainly I"is so. The
most convenient terminology here is that of cohomology. The relative cohomology groups of
h: ' I reduce, by excision, to sums of groups corresponding to the singular points P. These in
turn are the cokernels H9(A~1(P); [F,) of the natural injections H(P; F,) - H°(k~1(P); F,); in the
irreducible case, this was the group denoted Ky (I, P) and corresponds to the partitions of branches
at P into two sets. We now have the exact sequence

h¥ _ h* —
0> HO(I';Fy) -~ HOI'; Fy) > @p HO(h—l(P); Fy) > HY (I, Fy) - HY(I'; Fy) - 0.
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The radical of the cup product form is still the kernel of 4%, so a quadratic form on HY(I"; F,)
(or a principal homogeneous space of this) still induces a homomorphism ¢ of ker A* into F,.
It is natural to extend conjecture 4 (i) to demand that the induced homomorphism of
®p H°(h1(P); F,) has the values there prescribed. This imposes a consistency condition, that
this homomorphism does indeed factorize through ker 4*, or equivalently, that it vanish on the
image of H(T'; ).

Now HO(T'; F,) is generated by the classes 7, which are 1 one one component I'; of I'and 0 on
the others. The image of 9, in H°(h=(P); [F,) corresponds to the selection of those branches at P
which belong to I';. Thus ¢p(#;) is the local intersection number at P of I'; with (I'—I7}), taken
modulo 2; and ¢(%;) is the global intersection number of I'; with (I"—I';), mod 2. Hence

Prorosrrion. Conjecture 4(1) implies the consistency condition, that for each irreducible component I; of T,
the intersection number I'; (I'— I;) is even.

Observe that applying this condition to the blown-up curves 4 provides precisely the parity
condition noted earlier as necessary for the set B. This may be adduced as further evidence in
support of Conjecture 4(i): notice that this argument is in no way restricted to the case n = 4.

To check, we reconsider the numerical data. Recall the notation: we have the quartic 4 with
adjugate base points B; blowing these up yields 4 = I', with normalization A = I'. Write p
for the sum of the genera of components of any of these; 7 is the rank of ker 2*: H(I'; F,) -
H\(T'; F,).When I only has double points, 7 equals the number of those with two branches, minus
the number of irreducible components of I, plus the number of connected components.

First we list the cases when there are just 2 components (table 8). There are 54 possibilities for
(4, B) listed in § 2, but these yield only 17 cases for I'. We verify that the number N of nets depends
only on I" (though the multiplicity m does not: the first row of the table arises with multiplicities
8, 12, 20, 30 and 35, and the second with 4, 6, 8, 12, 15 and 16!). We may write I" = I'; U I, with
T, of genus 0 and non-singular; in table 8, p denotes the genus of I'}, §(I7) its singularities and
I', n T, the singularities arising from intersections of Iy with I%,.

In the cases when there are more than two components (and z = 4), each has genus 0. There are
10 further cases, represented by the diagrams in table 9 (intersections not shown do not exist). In
each case we give the triple of values of (7, N, @).

TABLE 8

Sy InT, Y/ r N (1) S nnr, b r N (1))
— — 0o 0 1 +1 — — 1 0o 3 +1
— 2A, 0 1 1 0 — 2A, 1 1 4 0
— Ay 0o 0 o0 -1 — A, 1 0 1 -1
— 4A, 0 3 4 0 A, — 0 1 1 0
— Ay+2A, 0 2 2 0 A, 2A, 0 2 2 0
—_ 24, 0 1 2 +1 A, A, 0 1 1 0
— A+A, 0 11 0 A, — 0 0 0 -1
—_ , 0o 0 1 +1 A, 24, 0 1 1 0
A, A, 0o 0 1 +1

Thus the conjectures already enunciated are seen to give correct results in all these cases: note
the confirmation that A, corresponds to @ = + 1.

I shall not give the discussion for triple points, which are subtler; the system B needs to be
replaced by anideal, and itis by no means clear (except for D, types) which ideals are permissible.
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We can make one final remark, however: to each 4 we have associated a list of permissible B
and to each B a multiplicity my and a group of order 22+73, It is easily verified that
23 2%+ 8, = 64 in all cases. We have shown that 36 of these correspond to nets; the remaining
28 correspond to bitangents: generalizing the result described in the non-singular case by Hesse

(18555).

TABLE 9

=]
[
o
o]
o]
-
—_
=]

<

RERI [r

e X
o)

It is now time to discuss the status of the conjectures in this paper. We have presented these as
arising out of the experimental data in § 1.

Indeed, it would be straightforward (though tedious) to use these direct geometrical arguments
to verify the conjectures in many of these special cases. For example, in the case of nets of conics
we have already observed the relation to points of order 2 on the Jacobian curve of the cubic. If 4
isa quartic with a node at L, there is a similar interpretation in terms of the 6 tangents from L to 4
which relates lemma 2.1 directly to the conjectures.

There is also a more theoretical approach to this subject givenin Turin (1975) and Barth (1977).

Turin’s paper is largely concerned with moduli, but also establishes a classification of (non-
singular) nets by the curve 4 = 0, a sheaf g of rings over 4 and an Dg-sheaf ¢ (the theta-
characteristic) satisfying 4°(6) = 0. This almost establishes our conjecture 3, but there are diffi-
culties in translation: e.g. what are the precise conditions on 6?, which still leaves some questions
unanswered.

Barth’s paper relates the classification of 2-plane bundles over P,C to nets which are non-
singular, have no subpencil with a common vertex, and have rank 2 where the latter condition is
defined as follows. If the net is defined by symmetric matrices A, A; and A, with A, non-singular,

<
o

0 -1 0 0 1 +1

3.6. Concluding discussion
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then the rank of the skew-symmetric matrix Ay A;A, — A, A7'A, depends only on the net, and
may be called the rank of the net. This invariant does not appear to have a convenient interpre-
tation in terms of our approach to classification (example: for nets of conics, type E and its
specializations G, H, I, I* have rank 0; the rest—it is enough to check type G* —have rank 2).

My feeling is that it should now be feasible to prove conjectures 1(i), 3 and 4 by these methods.
The questions concerning multiplicity are in any case of somewhat less interest.
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